Смекни!
smekni.com

Высокоскоростные технологии сетей телекоммуникаций (стр. 2 из 2)

Во-вторых, вид энергетического спектра, который должен иметь минимальное содержание низкочастотных (НЧ) и высокочастотных (ВЧ) компонентов. Энергетический спектр содержит непрерывную и дискретную части. Непрерывная часть энергетического спектра цифрового сигнала зависит от информационного сигнала и типа кода. Для того, чтобы цифровой сигнал не искажался в усилителе переменного тока фотоприемника, желательно иметь низкочастотную составляющую непрерывной части энергетического спектра подавленной, в противном случае для реализации оптимального приема перед решающим устройством регенератора требуется введение дополнительного устройства, предназначенного для восстановления НЧ составляющей, что усложняет оборудование линейного тракта. Существует еще одна причина для уменьшения низкочастотной составляющей сигнала. Оптическая мощность, излучаемая полупроводниковым лазером, зависит от округляющей температуры и может быть легко стабилизирована посредством отрицательной обратной связи (ООС) по среднему значению излучаемой мощности только в том случае, когда отсутствует НЧ часть спектра, изменяющаяся во времени. Иначе, в цепь ООС придется вводить специальные устройства, компенсирующие эти изменения.

В третьих, для выбора кода существенно высокое содержание информации о тактовом синхросигнале в линейном сигнале. Осуществить синхронизацию тем проще, чем больше число переходов уровня в цифровом сигнале, то есть чем больше переходов вида 0-1 или 1-0.

В четвертых, код не должен иметь каких-либо ограничений на передаваемое сообщение и обеспечивать однозначную передачу любой последовательности нулей и единиц.

В пятых, код должен обеспечивать возможность обнаружения и исправления ошибок. Основной величиной, характеризующей качество связи, является частое появление ошибок или коэффициент ошибок, определяемый отношением среднего количества исправимых принятых посылок к их общему числу. Контроль качества связи необходимо производить, не прерывая работу линии. Это требование предполагает использование кода, обладающего избыточностью, тогда достаточно фиксировать нарушение правил формирования кода, чтобы контролировать качество связи.

Кроме вышеперечисленных требований на выбор кода оказывает влияние простота реализации, низкое потребление энергии и малая стоимость оборудования линейного тракта.

Код NRZ (Non Return to Zero) - без возврата к нулю - это простейший двухуровневый код. Нулю соответствует нижний уровень, единице - верхний. Информационные переходы происходят на границе битов. Вариант кода NRZI (Non Return to Zero Inverted) - соответствует обратной полярности.

Несомненное достоинство кода - простота. Сигнал не надо кодировать и декодировать.

Кроме того, скорость передачи данных вдвое превышает частоту. Наибольшая частота будет фиксироваться при чередовании единиц и нулей. При частоте 1 Гц обеспечивается передача двух битов. Для других комбинаций частота будет меньше. При передаче последовательности одинаковых битов частота изменения сигнала равна нулю.

Код NRZ (NRZI) не имеет синхронизации. Это является самым большим его недостатком. Если тактовая частота приемника отличается от частоты передатчика, теряется синхронизация, биты преобразуются, данные теряются.

Для синхронизации начала приема пакета используется стартовый служебный бит, например, единица. Наиболее известное применение кода NRZI - стандарт ATM155. Самый распространенный протокол RS232, применяемый для соединений через последовательный порт ПК, также использует код NRZ. Передача информации ведется байтами по 8 бит, сопровождаемыми стартовыми и стоповыми битами. Закодируем двоичный сигнал 101101011110 кодом NRZ (Рис. 10.).


Задача 4

Классификация WDM систем на основе канального плана.

Ответ:

Оптическое мультиплексирование с разделением по длинам волн МРДВ (WDM) – сравнительно новая технология оптического (или спектрального) уплотнения, которая была разработана в 1970-1980 годах. В настоящее время WDM играет для оптических синхронных систем ту же роль, что и мультиплексирование с частотным разделением МЧР (FDM) для аналоговых систем передачи данных. По этой причине системы с WDM часто называют системами оптического мультиплексирования с частотным разделением ОМЧР (OFDM). Однако по сути своей эти технологии (FDM и OFDM) существенно отличаются друг от друга. Их отличие состоит не только в использовании оптического (OFDM) или электрического (FDM) сигнала. При FDM используется механизм АМ модуляции с одной боковой полосой (ОБП) и выбранной системой поднесущих, модулирующий сигнал которых одинаков по структуре, так как представлен набором стандартных каналов ТЧ. При OFDM механизм модуляции, необходимый в FDM для сдвига несущих, вообще не используется, несущие генерируются отдельными источниками (лазерами), сигналы которых просто объединяются мультиплексором в единый многочастотный сигнал. Каждая его составляющая (несущая) принципиально может передавать поток цифровых сигналов, сформированный по законам различных синхронных технологий. Например, одна несущая формально может передавать АТМ трафик, другая SDH, третья PDH и т.д. Для этого несущие модулируются цифровым сигналом в соответствии с передаваемым трафиком.

Канальный (частотный) план

Хотя рассчитывать сейчас на взаимную совместимость оборудования разных производителей систем WDM не приходится, необходимо было стандартизовать номинальный ряд несущих – “канальный или частотный план”, чтобы дать производителям ориентир на будущее, а также позиционировать уже существующие WDM системы. Эту задачу в первом приближении решил Сектор стандартизации МСЭ, выпустив стандарт ITU-T Rec. G.692.

Классификация WDM на основе канального плана

Схема расширенного канального плана позволяет предложить следующую схему классификации, учитывающую современные взгляды и тенденции выделять три типа мультиплексоров WDM:

обычные (грубые) WDM (CDWM) – ГМРДВ, или просто WDM – МРДВ;

плотные WDM (DWDM) – ПМРДВ;

высокоплотные WDM (HDWDM) – ВПМРДВ.

Хотя до сих пор и нет точных границ деления между этими типами, можно предложить, вслед за специалистами компании Alcatel, некоторые границы, основанные на исторической практике разработки систем WDM и указанном выше стандарте G.692 с его канальным планом, называемым также “волновым планом” или “частотным планом” в зависимости от того, используется ли волновая или частотная шкала канального плана. Итак, можно называть:

системами WDM – системы с частотным разносом каналов не менее 200 ГГц, позволяющие мультиплексировать не более 16 каналов;

системами DWDM – системы с разносом каналов не менее 100 ГГц, позволяющие мультиплексировать не более 64 каналов;

системами HDWDM – системы с разносом каналов 50 ГГц и менее, позволяющие мультиплексировать не менее 64 каналов.

Литература

1. Слепов Н.Н. Синхронные цифровые сети SDH. - М.: ЭКО-ТРЕНДЗ, 1998.

2. “Волоконно-оптическая техника: история, достижения, перспективы”, под ред. Дмитриева С.А., Слепова Н.Н.

3. www.dvgups.ru

4. www.ecolan.ru

5.