Смекни!
smekni.com

Модернизация технологической линии производства вареных колбас на ОАО "Борисоглебский мясокомбинат" (стр. 8 из 15)

Ксм – коэффициент, учитывающий способ смазки; для периодического способа смазывания Ксм = 1,3-1,5. Выбираем Ксм = 1,3.

Кп – коэффицент, учитывающий сменность работы оборудования, при работе в две смены Кп = 1.

Кэ = 1×1×1×1×1,3×1 = 1,3.

Число зубьев ведущей звездочки z1 = 25, ведомой:

z2 = z1×u, (4.34)

где u – передаточное отношение передачи (u = 1,167)

z2 = 25×1,167 = 29,175.

Принимаем z2 = 30.

Вращающий момент на валу ведущей звездочки


. (4.35)

гдеР = 3 – мощность мотор-редуктора, кВт;

n1 = 56 – частота вращения звездочки, мин-1.

Допускаемое давление в шарнирах цепи [Р], МПа, определяется в зависимости от шага цепи и числа оборотов ведущей звездочки.

Согласно рекомендациям [16] для шага t = 19,05 мм, n1 = 56 мин-1 и с учетом примечания

[P] = [Ртабл]×[1 + 0,01(z1 - 17)], (4.36)

[Р] = 39×[1 + 0,01 (25 - 17)] = 42,12 МПа.

Находим шаг цепи

.

Принимаем ближайшее большее значение t = 25,4 мм.

Проекция опорной поверхности шарнира Аоп = 179,7 мм2, разрушающая нагрузка Q = 60 кН, масс 1 м цепи g = 2,6 кг/м.

Проверка цепи по двум показателям

- по частоте вращения: для цепи с шагом t = 25,4 мм допускаемая частота вращения [n1] = 800 мин-1. Условие n1£ [n1] выполнено;

- по давлению в шарнирах.

Для данной цепи при n = 56 мин-1 значение [Р]=36[1+0,01(25-17)]=38,88 МПа.

Расчетное давление

, (4.37)

гдеFt – окружная сила, Н;

Аоп – проекция опарной поверхности шарнира, мм2;

, (4.38)

гдеV – средняя скорость цепи, м/с.

, (4.39)

.

.

.

Условие Р £ [Р] выполнено.

Определение числа звеньев цепи

, (4.40)

гдеаt – межосевое расстояние при данном шаге цепи

, (4.41)

где а – межосевое расстояние, мм;

t – шаг цепи, мм;

zS - суммарное число зубьев


zS = z1 + z2, (4.42)

D - поправка, D = z2 – z1/2p.

Выбираем а = 488 мм.

.

zS = 25 + 30 = 55.

.

Lt = 2×19,2 + 0,5×55 + (0,7962/19,2) = 38,4 + 27,5 + 0,033 = 65,933.

Округляем до четного числа Lt = 66.

Уточняем межосевое расстояние

Определение диаметров делительных окружностей звездочек

- ведущий:

;

- ведомой:

.

Определение диаметров наружных окружностей звездочек:

- ведущей:

, (4.43)

гдеd1 – диаметр ролика цепи, принемаем d1 = 15,88.

.

- ведомой:

.

Определение сил, действующих на цепь.

Окружная сила: Ft = 5067 Н.

Центробежная сила:

, (4.44)

гдеg = 2.6 – масса 1 м цепи, кг/м;

V = 0,592 – средняя скорость цепи, м/с.

Fv = 2,6×0,592 = 0,91 Н.

Сила от провисания цепи

Ff = 9.81Kf×g×a, (4.45)

гдеКf – коэффициент, учитывающий расположение цепи;

а – межосевое расстояние, м.

При наклонном расположении цепи Kf = 1,5.

Ff = 9,81×1,5×2,6×0,488 = 18,67 Н.

Расчетная нагрузка на валы

Fb = Ft + 2Ff, (4.46)

Fb = 5067 + 2×18,67 = 5104,34 Н.

Проверка коэффициента запаса прочности цепи


, (4.47)

где Q = 60 кН – табличная величина, определяемая согласно рекомендациям, нагрузка на цепь, кН.

.

Нормативный коэффициент запаса прочности [S] = 7,3.

Условие S³ [S] выполнено.

4.2.2 Расчет зубчатого зацепления [15]

Исходные данные:

- ведущая шестерня: число зубьев z1 = 85, модуль 4, диаметр делительной окружности d¶1 = 340 мм, ширина зубчатого венца В = 20 мм, частота вращения n1 = 48 мин-1, угловая скорость w = p×n/30 = 5,02 рад/с;

- ведомая шестерня: число зубьев z2 = 53; модуль 4, диаметр делительной окружности d¶2 = 212 мм, ширина зубчатого венца В = 25 мм, частота вращения n1 = 77 мин-1, угловая скорость w = 8,06 рад/с.

материал шестерни – сталь 40Х улучшенная ГОСТ 4543-71, твердость НВ = 245.

Передаточное отношение

u = z2/z1, (4.48)

u = 53/85 = 0,623.

Расчет зубчатого зацепления ведется на выносливость по контактным напряжениям на изгиб.

Напряжение контакта для прямозубых передач


, (4.49)

где aw = 276 – межосевое расстояние, мм;

Т2 – передаваемый крутящий момент на валу ведущей шестерни (ведомой звездочки), Н×мм;

Т2 = Т1×u, (4.50)

Т2 = 510×103×1,167 = 595×103 Н×мм;

Кн – коэффициент, учитывающий динамическую нагрузку и неравномерность распределения нагрузки между зубьями и по ширине венца;

Кн = Кнa×Кнb×КнJ, (4.51)

гдеКнa - коэффициент, учитывающий неравномерность распределения нагрузки между зубьями, для прямозубых колес Кнa = 1;

Кнb - коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца, при консольном расположении зубчатых колес, для

НВ £ 350 Кнb = 1,2-1,35. Выбираем Кнb = 1,3;

КнJ - коэффициент, зависящий от окружной скорости колес и степени точности их изготовления. Для прямозубых колес при J = 5 м/с и девятой степени точности КнJ = 1,05-1,10. Выбираем КнJ = 1,05.

Кн = 1×1,3×1,05 = 1,365.

.

Допускаемое контактное напряжение


, (4.52)

гдеsНlimb – предел контактной выносливости при базовом числе циклов; для стали 40 Х нормализованной при НВ < 350 sНlimb = 2НВ + 70 = 2×245 + 70 = 560 МПа;

КНL – коэффициент долговечности, при числе циклов нагружения каждого зуба колеса больше базового, принимают КHL = 1;

[SH] – коэффициент безопасности

Для нормализованной и улучшенной стали [SH] = 1,1-1,2.

.

4.3 Расчёт шнекового питателя волчка

Определяем шаг шнека

H = 0,7×D, (4.53)

где D = 0,156 диаметр шнека, м

H = 0,7×0,156 = 0,1 м.

Предельный диаметр шнека

Dпр = (Н/p)f, (4.54)

где f = 0,9 – коэффициент трения

Dпр = (

)×0,9 = 0,28 м.

Принимаем диаметр вала шнека d = 0,08 м

Угол подъёма винтовой линии на внешней стороне шнека


aD= arctg

(4.55)

aD= arctg

= 56,9 град.

Угол подъёма винтовой линии на внутренней стороне шнека

ad= arctg

(4.56)

ad= arctg

=38,1 град.

Среднее значение угла подъёма винтовой линии витка шнека

aср= 0,5(aD+ ad). (4.57)

aср= 0,5(56,9 + 38,1) = 47,5 град.

Снижение перемещения частиц продукта в осевом направлении можно учесть коэффициентом отставания, который определяется по формуле

К0 = 1 - (cos2aср - 0,5×f×sin2aср). (4.58)

К0 = 1 - (cos2 47,5 - 0,5×0,9×sin2×47,5) = 0,992.

Изгибающий момент в витке шнека по внутреннему контуру определим по выражению

, (4.59)

где Рmax = 800×103 - максимальное давление, развиваемое шнековым нагнетателем, Па;

D = 0,156 – внешний диаметр шнека, м;

а = 2 - отношение шнека и вала

Н×м.

Толщина витка шнека

, (4.60)

где [d] = 125×106 - допускаемое напряжение при изгибе, Па

м.

Площадь внутренней поверхности корпуса устройства на длине одного шага

Fb = pD(H - d). (4.61)

Fb = 3,14×0,156(0,1 - 0,0054) = 0,0465 м2.

Площадь одной стороны поверхности витка шнека на длине одного шага

(4.62)