Х Z
У неХ
Z неZ
неУ
F(X,Y,Z) = ((X или У) или (Z или неХ)) и (У и (неZ и неУ)).
Задача 4 Представьте, что к приведенной схеме подключили источник питания и прибор для измерения тока, состояние контактов задается таблицей, определите показания прибора (есть ток или нет):
Задание
а) б)
1 |
№ п/п | Закон логики | Математическая запись | Название закона |
1 | А = А(А=А) | Закон тождества | |
2 | __ А & А = 0 | __ А * А = 0 | Закон непротиворечия |
3 | __ А v A = 1 | __ A + A = 1 | Закон исключающего третьего |
4 | == А = А | Закон двойного отрицания | |
5 | А & 0 = 0; A v 0 = A | А * 0 = 0; А + 1 = А | |
6 | A & 1 =A; A v 1 = 1 | A * 1 = A; A + 1 = 1 | |
7 | A & A = A; A v A =A | A * A =A; A + A =A | |
8 | __ A v A =1 | __ A + A =1 | Законы Моргана |
9 | ________ __ (A B) =A & B | ||
10 | __ A B = A v B | ||
11 | A & (A v B) = A | A * (A + B) = A | Закон поглощения |
12 | A v A & B =A | A + A * B =A | Закон поглощения |
13 | __ __ A & (A v B) = A & B | __ __ A * (A +B) = A * B | |
14 | __ A v A & = A v B | __ A + A * B = A + B | |
15 | (A v B) v C = A v (B v C) (A & B) & C = A & (B & C) | (A + B) + C = A + (B + C) (A * B) * C = A * (B * C) | Правило ассоциативности |
16 | (A & B) v (A & C) = A & (B v C) (A v B) & (A v C) = A v (B & C) | (A*B) + (A*C) = A*(B+C) (A+B)*(A+C) = A+(B*C) | Правило дистрибутивности |
17 | A v A = A A & A = A | A + A = A A * A = A | Правило иденпотентности |
18 | A v B = B v A A & B = B & A | A + B = B + A A * B = B * A | Правило коммутативности |
19 | ____ __ __ A = B=A&BvA&B = (A+B)&(A+B) |
Пример:
________________
Упростите логическое выражение _____
F = (A v B) (B v C)Это логическое выражение необходимо привести к нормальной форме, т.к. в нём присутствует импликация и отрицание логической операции.
Воспользуемся формулой (9). Получится:
_________________
______ ========
(A v B) (B v C) = (A v B) & (B v C))=======
(A v B) & (B v C) = (A v B) & (B v C)
(A v B) & (B v C) = (A v B) & B v (A v B) & C
(A v B) & B v (A v B) & C = A & B v B & B v A & C v B v C
5. Применим (7). Получим:
A & B v B & B v A & C v B & C = A & B v B v A & C v B & C
6.Применим (16), т.е. вынесем за скобки В. Получим:
A & B v B v A & C v B & C = B &(A v 1) v A & C v B & C
7. Применим (6). Получим:
B &(A v 1) v A & C v B & C =B v A & C v B & C
8. Переставим местами слагаемые, сгруппируем и вынесем В за скобки. Получим:
B v A & C v B & C = B & (1 v C) v A & C
9. Применим (6). и получим ответ:
B & (1 v C) v A & C = B v A & C.
Ответ: F = B v A & C
Закрепление изученного материала:
Упростите выражения:
_____ _____
__
Ответы:
_____ _____ __ _ _ __ __ __ _ _ _
1) F = A & B v B v C = A v B v B & C = B( 1v C) v A = A v B;
2)
F = ((A B) v (B A) = A v B v B v A = (A v A) v (B v B) = 1 v 1 =1;