Смекни!
smekni.com

Логика как наука. История развития логики (стр. 3 из 13)

В алгебре высказываний любую логическую функцию можно выразить через основные логические операции, записать её в виде логического выражения и упростить, применяя законы логики и свойства логических операций. По формуле логической функции легко рассчитать её таблицу истинности. Необходимо только учитывать порядок выполнения логических операций (приоритет) и скобки. Операции в логическом выражении выполняются слева направо с учетом скобок.

Приоритет логических операций:

СКОБКИ,

ИНВЕРСИЯ,

КОНЬЮНКЦИЯ,

ДИЗЬЮНКЦИЯ.

ИМПЛИКАЦИЯ

ЭКВИВАЛЕНТНОСТЬ

Вопросы:

1. Какие бывают высказывания? Привести примеры различных высказываний.

2. Дать понятие логическим переменным и логическим функциям. Придумать примеры.

3. Выучить таблицы истинности и привести примеры.

Использование логики высказывания в технике.

Логические схемы на контактных элементах.

Логический элемент – это схема, реализующая логические операции И, ИЛИ, НЕ.

Рассмотрим реализацию логических элементов через электрические контактные схемы, знакомые из школьного курса физики. Контакты на схемах будем обозначать латинскими буквами.

1. Последовательное соединение контактов а в

а

2. Параллельное соединение контактов в

Составим таблицу зависимости состояния цепей от всевозможных комбинаций состояния контактов. Введем обозначения: 1-контакт замкнут, ток в цепи есть; 0-контакт разомкнут, тока в цепи нет.

А

В

Состояние цепи с последовательным соединением

Состояние цепи с параллельным соединением

0

0

0

0

0

1

0

1

1

0

0

1

1

1

1

1

Как видно, цепь с последовательным соединением соответствует логической операции И, т.к. ток в цепи появляется только при одновременном замыкании контактов А и В. цепь с параллельным соединением соответствует логической операции ИЛИ, т.к. ток в цепи появляется как при замыкании одного из контактов А или В, так и при одновременном их замыкании.

Логическая операция НЕ реализуется через контактную схему электромагнитного реле, принцип работы которого изучается в школьном курсе физики. Контакт неХ называется инверсией контакта Х; когда Х замкнут, неХ разомкнут, и наоборот.

Таблица истинности состояния инверсных контактов

Х

неХ

0

1

1

0

Любую электрическую схему можно разбить на цепочки из последовательно и параллельно соединенных контактов, которые мы назовем элементарными.

Упражнение 1. Разбейте на элементарные цепочки схемы на рис. 1 и рис. 1.

Решение. В схеме рис. 1 можно выделить цепи с последовательно соединенными контактами C,D,F и две параллельно соединенные цепи (1-цепь с контактами C,D,F; 2 –цепь с контактом А).

c d f b d

a

a c f

Рис. 1 Рис. 2

В схеме рис. 2 два параллельных соединения

B d

C И F

Которые объединяются последовательно с контактом А в одну схему.

Задачи

3.1. Определите вид и число элементарных цепочек в электрических цепях.

А) Х У б) В ad