Смекни!
smekni.com

по Сельскому хозяйству 2 (стр. 2 из 8)

Общая продуктивность растения, накопление им сухой массы теснейшим образом зависят от обеспечения его этими элементами.

Азот, углерод, кислород и водород образуют группу элементов, так называемых органогенов. Около 5 % сухого вещества растений обнаруживается при сжигании в виде золы, что дало основание назвать их зольными элементами. Важнейшие зольные элементы, без которых невозможны рост и развитие растений, — фосфор, калий, кальций, магний, сера, железо. Как правило, содержание этих элементов в растениях колеблется от сотых долей процента до нескольких процентов. Это дало основание назвать указанные элементы макроэлементами.

Растениям также необходимы в крайне незначительных количествах


еще ряд элементов — марганец, молибден, бор, медь, кобальт, цинк, йод, фтор и др. Они названы микроэлементами. Содержание их в растении составляет тысячные — стотысячные доли процента.

В отличие от космических земные факторы жизни растений используются последними через почву. Почва может лучше или хуже передавать растениям имеющиеся в ней или внесенные воду и питательные вещества. В экстенсивном земледелии, как известно, почва была единственным источником воды и питательных веществ. Длительность и эффективность использования почвы определялись естественным плодородием почвы. Как только почва переставала обеспечивать растения в достаточной степени земными факторами жизни, ее исключали из обработки и предоставляли действию природных процессов (залежная и переложная системы земледелия).

В интенсивном земледелии все большее значение приобретает трансформационная функция почвы, т. е. ее способность передавать растениям внесенные извне элементы питания и воду. Кроме того, повышенные требования предъявляют к фитосанитарному состоянию и технологическим свойствам почвы. По мере интенсификации земледелия трансформационная функция той или иной почвы, обусловленная природными факторами почвообразования, в ряде случае оказывается недостаточной. Возникает необходимость улучшения всего комплекса почвенных свойств, расширенного воспроизводства ее плодородия. Возможность такого преобразования почвы заложена в ее природе как возоб­новляемого природного ресурса. Однако при неправильном использовании она может утратить плодородие.

Взаимодействие факторов жизни растений в процессе их роста и развития, необычайно сложное и многообразное, в течение длительного времени является предметом изучения биологических и агрономических наук. Результаты большого количества опытов, их обработка и тщательный логический анализ позволили сформулировать ряд закономерностей действия факторов жизни растений в процессе создания урожая. Эти закономерности в агрономической науке известны как законы земледелия.

Закон равнозначимости и незаменимости факторов жизни ра­стений. Он гласит: «Все факторы жизни растений абсолютно равнозначимы и незаменимы».

Согласно этому закону для роста и развития растений должен быть обеспечен приток всех факторов жизни растений — космических и земных. Растение может нуждаться как в больших, так ив ничтожно малых количествах факторов, однако? отсутствие любого из них ведет к резкому снижению урожая и даже гибели растений. В этом проявляется абсолютный характер закона.

Ни один фактор нельзя заменить другим. Например, недостаток фосфора нельзя заменить избытком азота, а ограниченное поступление света восполнить лучшим обеспечением растений водой и т. д.

На практике получить максимально высокий урожай можно только при


бесперебойном снабжении растений всеми факторами в оптимальном количестве. Однако в конкретных условиях производства закон равнозначимости и незаменимости факторов жизни растений приобретает относительное значение вследствие неодинаковых затрат на обеспечение растений разными факторам. Это связано как с абсолютной потребностью растений в факторе, так и с его наличием в данной почве, в данном регионе, с материально-техническими возможностями производства и т. д.

Закон равнозначимости и незаменимости факторов жизни растений подчеркивает материальность земледельческого производства, не оставляет места всевозможным надеждам на «чудодейственные» рецепты получения урожая без материальных затрат или затрат в «гомеопатических дозах».

Закон минимума (минимума, оптимума, максимума). «Величина урожая определяется фактором, находящимся в минимуме. Наибольший урожай осуществим при оптимальном наличии фактора. При минимальном и максимальном наличии фактора урожай невозможен», — гласит он.

Впервые этот закон сформулировал Ю. Либих. Он считал, что рост урожая прямо пропорционален увеличению количества фактора, находящегося в минимуме, то есть

Y = AX, Где, У —- урожай;

X — напряжение фактора;

А — коэффициент пропорциональности для данного фактора.

Для наглядной демонстрации закона минимума использовали так называемую «бочку Добенека», клепки которой условно обозначают отдельные факторы жизни растений. Они неодинаковы по высоте, каждая соответствует наличию определенного фактора.

В этом опыте растения ячменя выращивали в стеклянных сосудах, заполненных одной и той же плодородной почвой. Все условия выращивания растений, кроме влажности почвы в сосудах, были одинаковыми. Влажность почвы определяли по полной влагоемкости, которая соответствовала уровню влажности 100 %. В каждом из 8 сосудов влажность была различной и составляла 5, 10, 20, 30, 40, 60, 80 и 100 %.

После окончания опыта урожай в зависимости от влажности почвы распределялся следующим образом:

Влажность почвы, 510 20 30 40 60 80 100%

ПВ

Урожай, дг сухого 163 146 176 217 227-197О- -

Вещества

Как следует из данных, полученных в опыте Гельригеля, максимальный урожай ячменя соответствует оптимальной влажности почвы в сосуде (60% ПВ). Минимум и максимум фактора (количества влаги) не обеспечили получение урожая. Если рассчитать разницу в увеличении


урожая на каждую последующую градацию влажности и отнести ее к единице влажности, то в опыте получаем прогрессивное уменьшение прибавки урожая от каждой последовательной прибавки влажности при соб­людении в неизменности всех других условий опыта, Указанное относительное снижение эффекта было принято за закон (закон Тюнена), которому якобы подчиняются все мероприятия в сельскохозяйственном производстве.

Анализ данных опыта Гельригеля, проведенный В. Р. Вильям-сом, показал, что приведенная закономерность отражает лишь частный случай. В опыте Гельригеля не соблюдено условие единственного логического различия — важнейшего требования агрономического эксперимента. При разной влажности почвы условия питания растений, • накопление и потребление из почвы минеральных веществ были различными. Условия влажности неразрывно связаны с состоянием окислительно-восстановительных условий в почве, а следовательно, решающим образом влияют на биохимические процессы в почве

По мере введения в опыт нового фактора — освещения — эффективность удобрения прогрессивно возрастает. Если соединить на графике урожай всех удобренных вариантов при разном освещении, то общая кривая урожайности при взаимодействии трех факторов — влажности, удобрения и освещенности — отражает прогрессивное сильное увеличение урожаев по мере включения в систему новых факторов. Закон Тюнена в дан-HQM опыте не получает никакого подтверждения.

Закон совокупного действия факторов жизни растений. Все факто­ры жизни растений действуют совокупно, т. е. взаимодействуют в процессе роста и развития растений. Либшер и Люндегорд показали, что в связи с законом, совокупного действия факторов действие отдельного фактора, находящегося в минимуме, тем интенсивнее, чем больше других факторов находится в оптимуме;

Люндегорд установил также «интерференцию» факторов, находящихся в минимуме, совмещение их отрицательного действия на рост и развитие растений. Ряд исследователей, руководствуясь законом совокупного действия факторов, пытались в математической форме установить зависимость урожая от факторов жизни растений. Наибольших успехов в этом направлении достиг Э. Митчерлих. Закон действия факторов жизни растений, по Э. Митчерлиху, гласит, что «прибавка урожая зависит от каждого фактора роста и его интенсивности, она пропорциональна разнице между возможным максимальным и действительно полученным урожаем». Он попытался математически выразить зависимость прибавки урожая от удобрения почвы.

Последующими исследованиями было установлено, что формула Э. Митчерлиха. не универсальна, так как сложные биологические процессы создания урожая не описываются математическими формулами. Тренель вскоре показал, что она, кроме того, неверна и математически.

Несмотря на трудности математического выражения закона


совокупного действия факторов, закон этот имеет огромное зна- , чение для практики земледелия. В этой связи В. Р. Вильяме ' указывал, что прогресс возможен лишь в том случае, когда наше воздействие на условия, в которых протекает это сложное производство, направлено одновременно на весь их комплекс. Этот комплекс условий представляет одно органическое целое, все элементы которого связаны неразрывно. Воздействие на один из этих элементов неминуемо влечет за собой необходимость воздействия и на все остальное.

Закон возврата. Вещество и энергия, отчужденные из почвы с
урожаем, должны быть компенсированы (возвращены в почву) с

определенной степенью превышения. Этот закон открыт Ю. Либихом.

К. А. Тимирязев и Д. Н. Прянишников одним из величайших приобретений науки признавали этот закон.

Земледелие как отрасль производства материально по своей природе. Урожай как материальная субстанция создается из материальных составных частей, определенная часть его — за счет веществ и энергии, получаемых растениями из почвы. Кроме того, почва — посредник растений в обеспечении их факторами жизни, среда их произрастания.