Смекни!
smekni.com

Фонон - квант биологической (клеточной) мембраны (стр. 3 из 4)

Для снижения искажения и затухания фононного сигнала необходима регулярная структура с минимумом “посторонних включений”. Структура миелиновой оболочки, отличающаяся от других биомембран высоким содержанием липидов и низким – белков, удовлетворяет этому условию (40 – 42). Очевидно, что эта структура позволяет фонону двигаться в любом направлении – нет никакой разницы, что двигаться в одну строну, что – в противоположную. Любая биомембрана является замкнутой, поэтому, в какую бы сторону не был излучён фонон, он всё равно может достигнуть самого удалённого, от места своего зарождения, участка мембраны своей клетки, если только раньше не достигнет своего адресата и не будет поглощен им, потратив свою энергию на активацию данной белковой системы.

Сигнал при распространении может подвергаться затуханию и/или искажениям, поэтому на линиях передачи сигналов необходимо периодически иметь усилители, способные подкорректировать, усилить полученный сигнал и передать его дальше. Естественно, что в случае биомембраны это будут молекулярные усилители, которые должны автоматически запускаться при получении фононного сигнала и выключаться после того, как передали его дальше. Очевидно, что процесс усиления сигнала идёт с затратой энергии, которая должна быть запасена клеткой предварительно, желательно, в легкодоступной форме, при этом усилитель должен контактировать с окружающей мембрану средой, иначе ему просто неоткуда получать внешнюю энергию для своей работы. Такие периодические системы реально существуют на поверхности аксонов – это уже упомянутые перехваты Ранвье. Фонон, в процессе своего движения по аксону, периодически активирует квантовые усилители, которые должны быть расположены в перехватах Ранвье. Эти квантовые усилители включаются для усиления полученного сигнала, а затем, передав его дальше, выключаются. Таким образом, нервный импульс никуда и нигде не прыгает, а спокойно распространяется по аксону, включая для своего усиления периодически расположенные в мембране квантовые усилители, которые, передав фононный сигнал дальше, затем выключаются. Иными словами, фонон достигая мембранного квантового усилителя, поглощается последним. Такое поглощение фонона означает, что усилитель получает порцию энергии, переносимую квантом звука. Получив энергию, усилитель активируется и передаёт усиленный (и скорректированный) сигнал в виде нового фонона. Этот процесс должен сопровождаться использованием энергии. В данном конкретном случае это трансмембранный электрохимический градиент – заранее запасённая энергия. После чего, отдав энергию, инактивируется, т.е. просто выключается. Следовательно, молекулярный усилитель должен содержать механозависимую часть, которая должна выключаться под действием сжатия, обусловленного наличием латерального поверхностного давления мембраны. Именно эта механозависимость и наблюдается в мембране нейронов для ионных каналов (10). Вполне возможно, что канал буквально схлопывается под действием сжатия со стороны своего окружения. Т.е. имеем, что молекулярный усилитель активируется под действием сигнала, который необходимо усилить и передать дальше, а затем, выполнив свою функцию, “автоматически” выключается под действием сжатия со стороны окружающей его мембраны. Естественно, что в выключенном (неактивном) состоянии усилитель не нуждается в энергии. А клетка может восстанавливать трансмембранный электрохимический градиент, служащий источником энергии для молекулярного усилителя; просто нужны две независимые молекулярные системы. В настоящее время нет данных для анализа конкретного механизма действия квантового фононного усилителя, роли пассивного и активного транспорта ионов через мембраны в этом процессе и т.д. Кстати, изменения величины трансмембранного электрического поля, характерные для нервных клеток, влияли только на полярные головки липида, но не затрагивали ни структуру, ни динамику углеводородных цепей в мембране (43). Иными словами, процессы, сопровождающие распространения мембранного фононного сигнала не влияли на условия его распространения – не влияли на углеводородный компонент биомембраны.

Для обслуживания телекоммуникационной клеточной системы можно использовать клеточную цитоплазму и внеклеточное пространство, чтобы не создавать помех распространению мембранных фононов. Внеклеточное пространство может играть особенно заметную роль в мозгу, где половина клеток является нейронами, а вторая половина – клетки глии – не заняты непосредственно в передаче и обработке нервных сигналов и могут быть задействованы для обеспечения тех или иных потребностей нейронов. В этом случае должна наблюдаться между ними взаимная информационная связь и взаимовлияние, что и обнаружено в последнее время (44). Такой механизм позволяет разделить пути распространения информации по аксону и химических соединений, необходимых для поддержания жизнедеятельности и работоспособности нервной клетки, как единого целого, так и её частей.

Даже такое краткое рассмотрение показывает, что квантовый фононный вариант предложенной Модели позволяет описать работу различных биологических систем, в том числе и нервной системы живых организмов. Передача информации нервными клетками с помощью фононов позволяет передавать клетке сразу несколько сигналов, причём в разных направлениях наиболее быстрым и простым и единым способом. Если фонон при своём движении в мембране и влияет на последнюю, то только уж в совсем локальной области, никак не влияя на распространение других фононов. Единственное возможное узкое место – ограниченное число усилителей в мембране и время их срабатывания. Предположим, что самая медленная стадия в процессе передачи информации это цикл срабатывания квантового фононного усилителя, равный ~0,002 сек (известные данные (38) о том, что не удаётся пропустить более ~500 нервных импульсов через аксон), то скорость распространения нервного импульса (0,2-0,4 м / 0,002 сек) будет в пределах 100 – 200 м/сек, что близко к известным значениям, приведённым выше. Для биологии это хорошее совпадение, которое получено, при допущении, что нервный импульс передаётся фононами у разных организмов и механизм работы усилителей у них близок. Скорость распространения самого ультразвука в тканях, равная ~ 1600 м/сек (28) и слабо зависящая от вида конкретной биологической ткани (45), не может быть лимитирующей стадией для скорости распространения фононного импульса в аксоне.

Аксон только передаёт информацию, а основное тело нервной клетки, имеющее множество отростков-дендритов, контактирующих с другими нервными клетками, должно анализировать информацию и передавать её определённым адресатам – другим нервным леткам. Естественно, эти более сложные функции должны выполняться более сложными клеточными квантовыми системами. А это потеря скорости передачи информации, что и наблюдают в экспериментах. Но существенно картина не меняется.

В итоге получили, что нервная клетка является аналогом любой телекоммуникационной системы, Клетка подчиняется тем же законам, что и иные системы, например телефонные сети (может быть, более близкий аналог – локальные компьютерные сети и интернет). Имея разные участки нервной телекоммуникационной системы в организме, для функционирования всей системы в целом нужна нормальная работа её частей. Не может быть нормальной работы всей информационной системы, если нарушена работа хотя бы одной из её частей.

В работе “Алкоголь и другие органические растворители” сделан вывод, что, эти соединения ухудшают работу фононопроводящих участков клеточных мембран, нарушая липидную структуру последних (46, 47). Но можно нарушать работу квантовых усилителей и других систем передачи информации, т.е. тех, которые ответственны за её анализ и/или адресацию. Причём это можно сделать, как минимум, двумя способами: перегрузив систему ложными сигналами, когда уже белковые квантовые системы не успевают обрабатывать поступающую информацию, или нарушив нормальную работы самих белковых квантовых систем.

1-я ситуация возникнет, если в мембране образуется избыток фононов. Это можно сделать, облучая организм ультразвуком, и когда, какие-то частоты ультразвука совпадут с собственными частотами клеток, соответственно, они и будут влиять на работу клетки, нарушая, скорее всего, её функционирование. Известно, что случайное вмешательство в работу сложной системы, чаше всего на пользу последней не идёт.

При этом можно перегрузить всю систему избыточными сигналами так, что она просто не сможет функционировать, у молекулярных усилителей просто не будет возможности вернуться в исходное состояние.

Возможно, перегрузить систему частично: где-то она будет успевать срабатывать нормально, а где-то нет. При более низкой интенсивности этого постороннего ультразвука, возникающие фононы будут хаотично распространяться по мембранам в разные стороны, внося хаос в работу управляемых этими нервами органов. Фононов еще мало для полной блокировки молекулярных усилителей. Сигналы распространяются по нейронам хаотично, вызывая хаотичные отклики на них в тканях животных, в том числе и избыточный, хаотичный выброс в межклеточное пространство различных нейромедиаторов – будет наблюдаться “самонаркотизация” организма. Если не удалось перегрузить систему посторонними фононными сигналами полностью, то она может работать, истощая созданный ранее энергетический запас клетки, а затем всё-таки выключится, теперь уже от истощения. Организму потребуется отдых. Теперь сравним эти выводы с экспериментальными наблюдениями.