Смекни!
smekni.com

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности (стр. 1 из 6)

Министерство общего и профессионального образования Российской Федерации

Новокузнецкий филиал – Институт Кемеровского Государственного Университета

Кафедра технической кибернетики

Факультет информационных технологий

Курсовая работа

По курсу "Метрология и измерения"

Выполнил:

студент III курса ФИТ

группы ИАС 98-1

Батенев А. А.


Оглавление

Введение 3

Понятие о температуре и о температурных шкалах 4

Устройства для измерения температур 5

1. Методы и технические средства измерения температуры 7

1.1 Термометры расширения и термометры манометрические 7

Жидкостные стеклянные термометры 7

Манометрические термометры 9

1.2. Термоэлектрические термометры 11

Устройство термоэлектрических термометров 12

Стандартные и нестандартные термоэлектрические термометры 13

Поверка технических ТТ 14

1.3. Электрические термометры сопротивления 15

Типы и конструкции ТС 16

Мостовые схемы измерения сопротивления термометров 17

Уравновешенный мост 17

Неуравновешенный мост 18

Автоматические уравновешенные мосты 18

1.4. Измерение термо-ЭДС компенсационным путем 20

1.5. Автоматические потенциометры 20

1.6. Бесконтактное измерение температуры 22

Основные понятия и законы излучения 22

Пирометры частичного излучения 23

Оптические пирометры 23

Фотоэлектрические пирометры 24

Пирометры спектрального отношения 26

Пирометры суммарного излучения 27

2. Расчетное задание 31

2.1. Расчет измерительной схемы автоматического уравновешенного моста 31

2.2. Расчет сопротивлений измерительной схемы автоматического потенциометра 32

Вывод 35

Список литературы 36

Введение

Высокопроизводительная, экономичная и безопасная работа технологических агрегатов металлургической промышленности требует применения современных методов и средств измерения величин, характеризующих ход производственного процесса и состояние оборудования. Автоматический контроль является логически первой ступенью автоматизации, без успешного функционирования которых невозможно создание эффективных АСУ ТП.

В истории развития мировой техники можно выделить три основных направления: создание машин-двигателей (водяных, ветряных, паровых, внутреннего сгорания, электрических), которые освободили человека от тяжелого физического труда; создание машин-орудий, т.е. станков и технологического оборудования различного назначения; создание устройств для контроля и управления машинами-двигателями, машинами-орудиями и технологическими процессами.

В современной техники для решения задач автоматического контроля все шире применяют полупроводники, лазеры, радиоактивные материалы, ЭВМ. Металлургическая промышленность является одной из основных отраслей народного хозяйства, в ней занято большое количество трудящихся, обслуживающих мощные и сложные агрегаты. При высоких производительностях даже самые небольшие ошибки управления агрегатом приводят к большим абсолютным потерям металла, топлива, электроэнергии. По этому возрастает роль автоматического контроля и управления производственными процессами. Все основные металлургические агрегаты (доменные и мартеновские печи, прокатные станы) оснащены различными системами автоматического контроля и управления и в значительной степени механизированы.

Основными параметрами (величинами), которые необходимо контролировать при работе металлургических агрегатов, является температура различных сред; расход, давление, состав газов и жидкостей; состав металлов; геометрические размеры проката. Автоматическими приборами измеряется температура: в рабочих пространствах металлургических печей, выплавляемого и нагреваемого металла, элементов огнеупорной кладки, конструкции регенераторов и рекуператоров, а так же продуктов сгорания топлива.

Понятие о температуре и о температурных шкалах

Температурой называют величину, характеризующую тепловое состояние тела. Согласно кинетической теории температуру определяют как меру кинетической энергии поступательного движения молекул. Отсюда температурой называют условную статистическую величину, прямо пропорциональную средней кинетической энергии молекул тела.

Все предлагаемы температурные шкалы строились (за редким исключением) одинаковым путем: двум (по меньшей мере) постоянным точкам присваивались определенные числовые значения и предполагалось, что видимое термометрическое свойство используемого в термометре вещества линейно связанно с температурой t:

,

где k – коэффициент пропорциональности; E – термометрическое свойство; D – постоянная.

Принимая для двух постоянных точек определенные значения температур, можно вычислить постоянные k, D и на этой основе построить температурную шкалу. При изменении температуры коэффициент k меняется, при чем различно для разных термометрических веществ. Поэтому термометры, построенные на базе различных термометрических веществ с равномерной градусной шкалой, давали при температурах, отличающихся от температур постоянных точек, различные показания. Последние становились особенно заметными при высоких (много больших температуры кипения воды) и очень низких температурах.

Термодинамическая шкала тождественна шкале идеального газа, построенной на зависимости давления идеального газа от температуры. Законы изменения давления от температуры для реальных газов отклоняются от идеальных, но поправки на отклонения реальных газов невелики и могут быть установлены с высокой степенью точности. Поэтому, наблюдая за расширением реальных газов и вводя поправки, можно оценить температуру по термодинамической шкале.

В начале XX века широко применялись шкалы Цельсия и Реомюра, а в научных работах – также шкалы Кельвина и водородная. Пересчеты с одной шкалы на другую создавали большие трудности и приводили к ряду недоразумений. Поэтому в 1933 году было принято решение о введении Международной температурной шкалы (МТШ).

Опыт применения МТШ показал необходимость внесения в нее ряда уточнений и дополнений, чтобы по возможности максимально приблизить ее к термодинамической шкале. Поэтому МТШ была пересмотрена и приведена в соответствие с состоянием знаний того времени. В 1960 году было утверждено новое "Положение о международной практической температурной шкале 1948 года. Редакция 1960 г.".

Устройства для измерения температур

Температуру измеряют с помощью устройств, использующих различные термометрические свойства жидкостей, газов и твердых тел. Существуют десятки различных устройств применяемых в промышленности, при научных исследованиях, для специальных целей.

В таблице 1 приведены наиболее распространенные устройства для измерения температуры и практические пределы их применения.

Таблица 1

Термометрическое свойство Наименование устройства Пределы длительного применения, 0С
Нижний Верхний
Тепловое расширение Жидкостные стеклянные термометры -190 600
Изменение давления Манометрические термометры -160 60
Изменение электрического сопротивления Электрические термометры сопротивления. -200 500
Полупроводниковые термометры сопротивления -90 180
Термоэлектрические эффекты Термоэлектрические термометры (термопары) стандартизованные. -50 1600
Термоэлектрические термометры (термопары) специальные 1300 2500
Тепловое излучение Оптические пирометры. 700 6000
Радиационные пирометры. 20 3000
Фотоэлектрические пирометры. 600 4000
Цветовые пирометры 1400 2800

1. Методы и технические средства
измерения температуры

1.1 Термометры расширения и термометры манометрические

Жидкостные стеклянные термометры

Самые старые устройства для измерения температуры – жидкостные стеклянные термометры – используют термометрическое свойство теплового расширения тел. Действие термометров основано на различии коэффициентов теплового расширения термометрического вещества и оболочки, в которой она находится (термометрического стекла или реже кварца).

Жидкостный термометр состоит из стеклянных баллона 1, капиллярной трубки 3 и запасного резервуара 4 (рис. 1).Термометрическое вещество 2 заполняет баллон и частично капиллярную трубку. Свободное пространство в капиллярной трубке и в запасном резервуаре заполняется инертным газом или может находиться под вакуумом. Запасной резервуар или выступающая за верхним делением шкалы часть капиллярной трубки служит для предохранения термометра о порчи при чрезмерном перегреве.

В качестве термометрического вещества чаще всего применяют химически чистую ртуть. Она не смачивает стекла и остается жидкой в широком интервале температур. Кроме ртути в качестве термометрического вещества в стеклянных термометрах применяются и другие жидкости, преимущественно органического происхождения. Например: метиловый и этиловый спирт, керосин, пентан, толуол, галлий, амальгама таллия.

Основные достоинства стеклянных жидкостных термометров – простота употребления и достаточно высокая точность измерения даже для термометров серийного изготовления. К недостаткам стеклянных термометров можно отнести: плохую видимость шкалы (если не применять специальной увеличительной оптики) и невозможность автоматической записи показаний, передачи показаний на расстояние и ремонта.