Смекни!
smekni.com

Положение прояснил только рентгеноструктурный анализ. В последнее время благодаря мощным электронным микроскопам, позволяющим просматривать тонкие металлические пленки насквозь, картина стала наглядной. Истина оказалась где-то «посредине». Медь не выделяется из твердого раствора и не остается внутри него в прежнем состоянии. В процессе старения она собирается в дискообразных участках толщиной в 1...3 атомных слоя и диаметром около 90 Ǻ, образуя так называемые зоны Гинье – Престона. Они имеют искаженную кристаллическую структуру твердого раствора; искажается также прилегающая к зоне область самого твердого раствора.

Число таких образований огромно – оно выражается единицей с 16...18 нулями для 1 см сплава. Изменения и искажения кристаллической решетки при образовании зон Гинье – Престона (зонное старение) и служат причиной повышения прочности дюралюмина при естественном старении. Эти же изменения увеличивают электрическое сопротивление сплава. При повышении температуры старения вместо зон, имеющих структуру, близкую к структуре алюминия, возникают мельчайшее частицы метастабильных фаз с собственной кристаллической решеткой (искусственное, или, точнее, фазовое старение). Это дальнейшее изменение структуры приводит к резкому повышению сопротивления малым пластическим деформациям.

Можно без преувеличения сказать, что крылья самолетов удерживаются в воздухе зонами или метастабильными частицами, и если в результате нагрева вместо зон и частиц появятся стабильные выделения, крылья потеряют свою прочность и просто согнутся.

В Советском Союзе в 20-х годах инженер-металлург В.А. Буталов разработал отечественный вариант дюралюмина, названный кольчугалюминием. Слово «дюралюмин» происходит от названия германского города Дюрена, в котором было начато промышленное производство этого сплава. А кольчугалюминий делали в поселке (ныне городе) Кольчугино Владимирской области. Из кольчугалюминия был сделан первый советский металлический самолет АНТ-2 конструкции А.Н. Туполева.

Подобные сплавы и сейчас важны для техники. Из сплава Д1 делают, в частности, лопасти самолетных винтов. Во время войны, когда летчикам нередко приходилось садиться на случайные площадки или, не выпуская шасси, на «брюхо», много раз случалось, что лопасти винтов сгибались при ударе о землю. Сгибались, но не ломались! Тут же в полевых условиях их выпрямляли и снова летали с тем же винтом... Другой сплав того же семейства дюралюминов – Д16 используют в авиастроении иначе – из него делают нижние панели крыльев.

Принципиально новые сплавы появляются тогда, когда открываются новые фазы-упрочнители. Их искали, ищут и будут искать исследователи. Фазы – это, по существу, химические соединения-интерметаллиды, образующиеся в сплаве и заметно влияющие на его свойства. Разные фазы по-разному повышают прочность, коррозионную стойкость и другие практически важные характеристики сплава. Однако со времени открытия Вильма их найдено совсем немного – меньше десятка. Их образование возможно лишь при условии растворимости соответствующих элементов в алюминии. Очевидно, каждая из фаз-упрочнителей заслуживает достаточно обстоятельного рассказа.

Уже упоминалось, что первым алюминиевым сплавом был его сплав с кремнием, соседом по менделеевской таблице. Но свойства этого сплава были неудовлетворительны и потому долгое время считали, что добавка кремния алюминию вредна. Но уже в начале 20-х годов нашего века было твердо установлено, что сплавы системы Al – Mg – Si (фаза Mg2Si) обладают, подобно дюралюминам, эффектом упрочнения при старении. Предел прочности таких сплавов – от 12 до 36 кг/мм2, в зависимости от содержания кремния и магния и от добавок меди и марганца.

Эти сплавы широко применяют в судостроении, а также в современном строительстве. Любопытная деталь: в наши дни в некоторых странах (в США, например) на строительство расходуется больше алюминия, чем на все виды транспорта, вместе взятые: самолеты, суда, железнодорожные вагоны, автомобили. В нашей стране алюминиевые сплавы широко применялись при строительстве Дворца пионеров на Ленинских горах и здания Комитета стандартом СССР на Ленинском проспекте в Москве, Дворца спорта в Киеве, а также многих других современных здании. Тысячи сборных алюминиевых домиков успешно «работают» в Заполярье и в горных районах, там, где нет поблизости местных стройматериалов или строительство сопряжено с колоссальными трудностями. В такие места алюминиевые (в основном) дома доставляются алюминиевыми же (в основном) самолетами и вертолетами.

Кстати, о вертолетах. Лопасти их винтов во всем мире делают из сплавов системы Al – Mg – Si, потому что эти сплавы обладают очень высокой коррозионной стойкостью и хорошо противостоят вибрационным нагрузкам. Именно это свойство первостепенно важно для вертолетчиков и их пассажиров. Малейшие коррозионные дефекты могут резко ускорить развитие усталостных трещин. Для спокойствия пассажиров отметим, что в действительности усталостные трещины развиваются достаточно медленно, и на всех вертолетах установлены приборы, подающие летчику сигнал о появлении первой мелкой трещинки. И тогда лопасти меняют, несмотря на то, что они могли бы работать еще сотни часов.

Эффект старения присущ и сплавам системы Al – Zn – Mg. Эта система сразу же проявила себя дважды рекордсменом: рекордсменом по прочности – еще в 20-х годах получены алюминий-цинк-магниевые сплавы прочностью 55...60 кг/мм2 – и «рекордсменом наоборот» по химической стойкости – листы и рулоны из таких тройных сплавов растрескивались, а то и рассыпались под влиянием атмосферной коррозии еще в процессе вылеживания, прямо на заводском дворе.

Десятки лет исследователи разных стран искали возможность повысить коррозионную стойкость подобных сплавов. В конце концов, уже в 50-х годах появились высокопрочные алюминиевые сплавы с цинком и магнием, обладающие удовлетворительной коррозионной стойкостью. Среди них – отечественные сплавы В95 и В96. В этих сплавах, помимо трех основных компонентов, есть также медь, хром, марганец, цирконий. При такой комбинации химических элементов существенно меняется характер распада пересыщенного твердого раствора, отчего и повышается коррозионная стойкость сплава.

Однако когда авиаконструктор О.К. Антонов приступил к созданию гигантского самолета «Антей» и для силового каркаса «Антея» потребовались большие поковки и штамповки, равнопрочные во всех направлениях, сплавы В95 и В96 не подошли. В сплаве для «Антея» малые добавки марганца, циркония и хрома пришлось заменить железом. Так появился известный сплав В93.

В последнее десятилетие возникли новые требования. Для так называемых широкофюзеляжных самолетов ближайшего будущего, рассчитанных на 300...500 пассажиров и на 30...50 тыс. летных часов эксплуатации, повышаются главные критерии – надежность и долговечность. Широкофюзеляжные самолеты и аэробусы на 70...80% будут состоять из алюминиевых сплавов, от которых требуется и очень высокая прочность и очень высокая коррозионная стойкость. Почему прочность – понятно, почему химическая стойкость – в меньшей мере, хотя приведенный выше пример с вертолетными лопастями, очевидно, достаточно нагляден...

Возникла концепция безопасно-повреждаемых конструкций, которая гласит: если в конструкции и появилась трещина, она должна развиваться медленно, и, даже достигнув значительных размеров, будучи легко обнаруживаемой, она, эта трещина, ни в коем случае не должна вызывать разрушения конструкции в целом. Это значит, что высокопрочные алюминиевые сплавы для таких самолетов должны обладать высокой вязкостью разрушения, высокой остаточной прочностью при наличии трещины, а это возможно лишь при высокой коррозионной стойкости.

Все эти свойства прекрасно сочетаются в алюминиевых сплавах повышенной чистоты: примесей железа – десятые доли процента, кремния – сотые, а натрия, микродобавки которого значительно улучшают свойства сплавов алюминия с кремнием, здесь должно быть не больше нескольких десятитысячных долей процента. А основа таких сплавов – система Аl – Zn – Mg – Сu. Старение этих сплавов ведут таким образом, чтобы упрочняющие частицы стали несколько больше обычного (коагуляционное старение). Правда, при этом немного теряется прочность, и некоторые детали приходится делать более толстостенными, но это пока неизбежная плата за ресурс и надежность. Ирония судьбы: алюминиевые сплавы с цинком и магнием, бывшие когда-то самыми коррозионно-нестойкими, наука превратила в своего рода эталон коррозионной стойкости. Причины этого чудесного превращения – добавка меди и рациональные режимы старения.

Еще один пример совершенствования давно известных систем и сплавов. Если в классическом дюралюмине резко ограничить содержание магния (до сотых долей процента), но сохранить марганец и повысить концентрацию меди, то сплав приобретает способность хорошо свариваться плавлением. Конструкции из таких сплавов хорошо работают в температурном интервале от абсолютного нуля до +150...200°C.

В наше время некоторым техническим изделиям приходится попеременно воспринимать то умеренный жар, то неумеренный холод. Не случайно из подобных сплавов были изготовлены баки жидкого водорода и жидкого кислорода на американских ракетах «Сатурн», доставивших на Луну экипажи кораблей «Аполлон».

При решении земных проблем перевозки и хранения сжиженного газа с трехкомпонентными сплавами Al – Сu – Мn довольно успешно конкурируют очень легкие двухкомпонентные сплавы алюминия с магнием – магналии. Магналии не упрочняются термической обработкой. В зависимости от технологии изготовления и содержания магния их прочность меняется от 8 до 38 кг/мм2. При температуре жидкого водорода они хрупки, но в среде жидкого кислорода и сжиженных горючих газов работают вполне успешно. Области их применения весьма обширны. В частности, они прекрасно зарекомендовали себя в судостроении: из магналиев изготовлены корпуса судов на подводных крыльях – «Ракет» и «Метеоров». Применяют их и в конструкциях некоторых ракет.