Смекни!
smekni.com

Цветные металлы и их сплавы (стр. 1 из 2)

Министерство образования российской федерации

Новосибирский технологический институт

Московского государственного университета дизайна и технологии

(филиал)

Факультет заочного обучения и экстерната

Кафедра: «Машины и аппараты легкой промышленности»

РЕФЕРАТ

Дисциплина: Технология конструкционных материалов

Тема: Цветные металлы и их сплавы

Обозначение: ЗО8073

Новосибирск – 2010

Содержание

Введение

1. Медь и ее сплавы

1.1 Сплавы меди

1.1.1 Латуни

1.1.2 Бронзы

2. Алюминий и его сплавы

2.1 Деформируемые алюминиевые сплавы

2.2 Литейные алюминиевые сплавы

3. Цинк и его сплавы

4. Магний и его сплавы

4.1 Сплавы на основе магния

Заключение

Список использованных источников

Введение

Цветная металлургия – отрасль металлургии, которая включает добычу, обогащение руд цветных металлов и выплавку цветных металлов и их сплавов. По физическим свойствам и назначению цветные металлы условно можно разделить на благородные, тяжелые, легкие и редкие.

К благородным металлам относят металлы с высокой коррозионной стойкостью: золото, платина, палладий, серебро, иридий, родий, рутений и осмий. Их используют в виде сплавов в электротехнике, электровакуумной технике, приборостроении, медицине и т.д.

К тяжелым относят металлы с большой плотностью: свинец, медь, хром, кобальт и т.д. Тяжелые металлы применяют главным образом как легирующие элементы, а такие металлы, как медь, свинец, цинк, отчасти кобальт, используются и в чистом виде.

К легким металлам относятся металлы с плотностью менее 5 грамм на кубический сантиметр: литий, калий, натрий, алюминий и т.д. Их применяют в качестве раскислителей металлов и сплавов, для легирования, в пиротехнике, фотографии, медицине и т.д.

К редким металлам относят металлы с особыми свойствами: вольфрам, молибден, селен, уран и т.д.

К группе широко применяемых цветных металлов относятся алюминий, титан, магний, медь, свинец, олово.

Цветные металлы обладают целым рядом весьма ценных свойств. Например, высокой теплопроводностью (алюминий, медь), очень малой плотностью (алюминий, магний), высокой коррозионной стойкостью (титан, алюминий).

По технологии изготовления заготовок и изделий цветные сплавы делятся на деформируемые и литые (иногда спеченые).

На основании этого деления различают металлургию легких металлов и металлургию тяжелых металлов.

1. Медь и ее сплавы

Медь – металл красного, в изломе розового цвета. Медь относится к металлам, известным с глубокой древности.

Технически чистая медь обладает высокой пластичностью и коррозийной стойкостью, высокой электропроводностью и теплопроводностью (100% чистая медь-эталон, то 65%-алюминий, 17% железо), а также стойкостью против атмосферной коррозии. Позволяет использовать ее в качестве кровельного материала ответственных зданий.

Температура плавления меди 1083°С. Кристаллическая решетка ГЦК. Плотность меди 8,94 г/см3 . Благодаря высокой пластичности медь хорошо обрабатывается давлением (из меди можно сделать фольгу толщиной 0,02 мм), плохо резанием.

Литейные свойства низкие из-за большой усадки.

На свойства меди большое влияние оказывают примеси: все, кроме серебра и бериллия ухудшают электропроводность.

Стоимость чистой меди постоянно повышается, а мировые запасы медной руды, по различным оценкам, истощатся в ближайшие 10-30 лет.

Медь маркируют буквой М, после которой стоит цифра. Чем больше цифра, тем больше в ней примесей. Наивысшая марка М00 – 99,99% меди, М4 – 99% меди.

В таблице 1 содержится информация по маркам меди в зависимости от чистоты согласно ГОСТ 859-78.

Таблица 1

Марка меди в зависимости от чистоты

Марка МВЧк M00 М0 Ml М2 МЗ
Содержание 99,993 99,99 99,95 99,9 99,7 99,5

После обозначения марки указывают способ изготовления меди: к –катодная, б – бескислородная, р – раскисленная. Медь огневого рафинирования не обозначается.

М00к – технически чистая катодная медь, содержащая не менее 99,99% меди и серебра.

МЗ – технически чистая медь огневого рафинирования, содержит не менее 99,5% меди.

1.1 Сплавы меди

В технике применяют 2 большие группы медных сплавов: латуни и бронзы.

1.1.1 Латуни

Латуни – сплавы меди с цинком (до 50% Zn) и небольшими добавками алюминия, кремния, свинца, никеля, марганца (ГОСТ 15527-70, ГОСТ 17711-80). Медные сплавы, предназначенные для изготовления деталей методами литья, называют литейными, а сплавы, предназначенные для изготовления деталей пластическим деформированием – сплавами, обрабатываемыми давлением.

Латуни дешевле меди и превосходят ее по прочности, вязкости и коррозионной стойкости. Обладают хорошими литейными свойствами.

Латуни, применяются в основном для изготовления деталей штамповкой, вытяжкой, раскаткой, вальцовкой, т.е. процессами, требующими высокой пластичности материала заготовки. Из латуни изготавливаются гильзы различных боеприпасов.

В зависимости от числа компонентов различают простые (двойные) и специальные (многокомпонентные) латуни.

Простые латуни содержат только Cu и Zn.

Специальные латуни содержат от 1 до 8% различных легирующих элементов (Л.Э.), повышающих механические свойства и коррозионную стойкость.

Al, Mn, Ni повышают механические свойства и коррозионную стойкость латуней. Свинец улучшает обрабатываемость резанием. Кремнистые латуни обладают хорошей жидкотекучестью и свариваемостью.

1.1.2 Бронзы

Бронзы – это сплавы меди с оловом (4-33% Sn), свинцом (до 30% Pb), алюминием (5-11% AL), кремнием (4-5% Si), сурьмой, фосфором и другими элементами.

Бронзы – это всякий медный сплав, кроме латуни. Это сплавы меди, в которых цинк не является основным легирующим элементом. Общей характеристикой бронз является высокая коррозионная стойкость и антифрикционность (от анти- и лат. frictio- трение). Бронзы отличаются высокой коррозионной устойчивостью и антифрикционными свойствами. Из них изготавливают вкладыши подшипников скольжения, венцы червячных зубчатых колес и другие детали.

Высокие литейные свойства некоторых бронз позволяют использовать их для изготовления художественных изделий, памятников, колоколов.

По химическому составу делятся на оловянные бронзы и без оловянные (специальные).

Оловянные бронзы обладают высокими механическими, литейными, антифрикционными свойствами, коррозионной стойкостью, обрабатываемостью резанием, но имеют ограниченное применение из-за дефицитности и дороговизны олова.

Специальные бронзы не только служат заменителями оловянных бронз, но и в ряде случаев превосходят их по своим механическим, антикоррозионным и технологическим свойствам:

Алюминиевые бронзы – 5-11% алюминия. Имеют более высокие механические и антифрикционные свойства, чем у оловянных бронз, но литейные свойства – ниже. Для повышения механических и антикоррозионных свойств вводят железо, марганец, никель (например, БрАЖ9-4). Из этих бронз изготовляют различные втулки, направляющие, мелкие ответственные детали.

Бериллиевые бронзы содержат 1,8-2,3% бериллия отличаются высокой твердостью, износоустойчивостью и упругостью (например, БрБ2, БрБМН1,7). Их применяют для пружин в приборах, которые работают в агрессивной среде.

Кремнистые бронзы – 3-4% кремния, легированные никелем, марганцем, цинком по механическим свойствам приближаются к сталям.

Свинцовистые бронзы содержат 30% свинца, являются хорошими антифрикционными сплавами и идут на изготовление подшипников скольжения.

Медные сплавы обозначают начальными буквами их названия (Бр или Л), после чего следуют первые буквы названий основных элементов, образующих сплав, и цифры, указывающие количество элемента в процентах.

Примеры:

– БрА9Мц2Л – бронза, содержащая 9% алюминия, 2% Mn, остальное Cu («Л» указывает, что сплав литейный);

– ЛЦ40Мц3Ж – латунь, содержащая 40% Zn, 3% Mn, ~l% Fe, остальное Cu;

– Бр0Ф8,0-0,3 – бронза содержащая 8% олова и 0,3% фосфора;

– ЛАМш77-2-0,05 – латунь содержащая 77% Cu, 2% Al, 0,055 мышьяка, остальное Zn (в обозначении латуни, предназначенной для обработки давлением, первое число указывает на содержание меди).

В несложных по составу латунях указывают только содержание в сплаве меди:

– Л96 – латунь содержащая 96% Cu и ~4% Zn (томпак);

– Лб3 – латунь содержащая 63% Cu и 37% Zn.

Высокая стоимость меди и сплавов на ее основе привела в 20 веке к поиску материалов для их замены. В настоящее время их успешно заменяют пластиками, композиционными материалами.


2. Алюминий и его сплавы

Алюминий – металл серебристо-белого цвета. Температура плавления 650°С. Алюминий имеет кристаллическую ГЦК решетку. Алюминий обладает электрической проводимостью, составляющей 65% электрической проводимости меди. Алюминий занимает 3 место по распространению в земной коре после кислорода и кремния. Алюминий устойчив против атмосферной коррозии благодаря образованию на его поверхности плотной окисной пленки. Наиболее важной особенностью алюминия является низкая плотность – 2,7г/см3 против 7,8г/см3 для железа и 8,94г/см3 для меди. Имеет хорошую тепло- и электропроводность. Хорошо обрабатывается давлением.

Маркируется буквой А и цифрой, указывающей на содержание алюминия. Алюминий особой чистоты имеет марку А999 – содержание Al в этой марке 99,999%. Алюминий высокой чистоты – А99, А95 содержат Al 99,99% и 99,95% соответственно. Технический алюминий – А85, А8, А7 и др.

Применяется в электропромышленности для изготовления проводников тока, в пищевой и химической промышленности. Алюминий не стоек в кислой и щелочной среде, поэтому алюминиевая посуда не используется для маринадов, солений, кисломолочных продуктов. Применяется в качестве раскислителя при производстве стали, для алитирования деталей с целью повышения их жаростойкости. В чистом виде применяется редко из-за низкой прочности – 50 МПа.