Смекни!
smekni.com

Логика неопределенности и неопределенности во времени (стр. 5 из 7)

Предложение 6 . Унарные связки “ O ” и “н” подчиняются вышеприведенной таблице истинности, тогда как бинарные связки не могут быть заданы конечной таблицей истинности.

Предложение 7 . Пусть А – замкнутая формула. Тогда ¦нА¦ = ¦нА*¦ = ¦н O А¦ = ¦н O А*¦. При этом либо ¦нА¦ = 1, либо ¦нА¦ = 0.

Для доказательства данного утверждения достаточно обратить внимание, что условия выполнимости для нА и нА* эквивалентны ввиду того, что А неопределенно выполнена тогда и только тогда, когда А* неопределенно выполнена. Аналогичным образом, если формула А неопределенно выполнена, то и O А также неопределенно выполнена, и наоборот. Поэтому можно было бы сказать, что если А неопределенно не выполнена, то и O А также неопределенно не выполнена. То есть в условиях неопределенности выполнимость и невыполнимость совпадают. В случае неопределенности А формула нА будет определенно истинной, а в случае определенной истинности или определенной ложности А формула нА окажется определенно ложной. Случай ¦нА¦ = 1/0 поэтому исключается. С философской точки зрения это означает, что утверждение неопределенности или, равным образом, отрицание неопределенности, само вполне определенно. Но так и должно быть. Либо неопределенность есть, либо ее нет. Словосочетание “неопределенная неопределенность”, на наш взгляд, лишено смысла.

Стандартное понятие общезначимой формулы распространяется на построенную трехзначную семантику естественным образом: вместо истинно надо сказать определенно истинно . Точнее, формула А языка L н является н- общезначимой , если А определенно истинна в любой структуре для языка L н. Для обычной общезначимости пишем u = А, а для н-общезначимости будем использовать запись н u = А.

Принципиальное значение имеет следующее утверждение.

Предложение 8 . Для любой формулы А языка L н u = А тогда и только тогда, когда н u = А.

Из определений ясно, что если н u = А, то не только u = А, но и u = А*. Доказательство в обратную сторону основывается на том факте, что u = А U u = А* (ведь формулы А и А* имеют одинаковую структуру). Рутинные детали опустим.

Осуществив столь же естественное распространение на семантику неопределенности понятия логического следования (снова достаточно в нужных местах добавить слово “определенно”), получим более общее утверждение.

Предложение 9 . Г u = А U Г н u = А.

Наконец, используя теорему полноты для классической логики, получаем следующее утверждение.

Предложение 10 . Тн ? ? А U н u = А.

Пора проиллюстрировать логическую теорию неопределенности конкретными примерами рассуждений в неопределенных условиях. Лучше всего это сделать, обратившись к логике исторических рассуждений, поскольку именно исследователям уже исчезнувших событий прошлого приходится сталкиваться с неопределенностями там, где аналогичные события, будь мы их очевидцами, не вызвали бы вопросов.

Более конкретно, мы займемся проблемой прямого правила удаления квантора существования в рассуждениях историков. Но вначале необходимо показать, как эта проблема решалась в классической и интуиционистской (ставшей уже почти классической) логике. Одним из способов решения было ведение e -оператора. Как известно, идея исчисления с e -термином принадлежит Д. Гильберту. Смысл выражения вида e хА(х) состоит в указании на некий индивид, обладающий свойством А(х), если такой индивид существует. Знаки индивидов называются именами, однако в рассматриваемом случае мы имеем дело с именем не конкретного, а неопределенного индивида, произвольно выбранного среди объектов, удовлетворяющих свойству А(х), если таковые вообще найдутся. Поэтому оператор e получил название оператора неопределенной дескрипции . Существует также оператор определенной дескрипции , обычно обозначаемый символом i , который указывает на индивид однозначным образом. В трактовке Д. Гильберта требование однозначности обеспечивается доказательством существования и единственности введенного с помощью i -оператора объекта. Выражение i хА(х) имеет смысл тогда и только тогда, когда предварительно доказано, во-первых, что $ хА(х) (объект существует) и, во-вторых, что " х " у((А(х) & А(у)) ® х = у) (объект единственен) [7], или, в сокращенной форме, $ !хА(х). Отказываясь от слишком обременительного условия доказательства единственности и оставляя требование доказательства существования, приходим к h -оператору, который (так же, как и e ) оказывается оператором неопределенной дескрипции, поскольку указывает на произвольный объект, удовлетворяющий свойству А(х): h хА(х) означает результат выбора некоторого индивида, выполняющего свойство А(х).

Необходимость перехода к оператору неопределенной дескрипции В. А. Смирнов иллюстрирует на следующем примере [16]. Рассмотрим предложение “Семен видел верблюда”. Здесь “Семен” – имя индивида, а термин “верблюд” указывает на класс индивидных объектов. Однако интуитивное понимание данного предложения не совместимо с утверждением “Семен видел класс верблюдов”. Имеется в виду, что Семен видел некоторого представителя класса верблюдов, а не сам класс. Уточнить сказанное позволяет оператор неопределенной дескрипции: “(Семен) Видел ( h х Верблюд (х))”. Но выражение вида h хА(х) имеет смысл тогда и только тогда, когда доказано $ хА(х), что также накладывает излишне строгие ограничения на использование оператора неопределенной дескрипции. Верблюды существуют, а динозавры нет. Поэтому утверждение “(Семен) Видел ( h х Динозавр (х))” оказывается просто неправильно построенным, хотя оно имеет точно такую же форму, как и в предыдущем примере.

Выходом из этого затруднения является отказ от обязательного доказательства существования объектов, обладающих некоторым свойством, в утверждениях с использованием оператора неопределенной дескрипции. Гильберт и Бернайс следующим образом обобщают идею неопределенной дескрипции, вводя e -оператор [8]. Принимается аксиома:

А( t ) ® A ( e xA ( x )) (где t – терм).

Кванторы общности и существования вводятся определениями:

$ xA(x) = Df A( e xA(x)), " xA(x) = Df A( e x O A(x)).

Теперь формулы вида В( e xA ( x )) можно вводить без каких-либо ограничений, связанных с предварительным доказательством существования индивидов, обладающих свойством А(х). С семантической точки зрения, общезначимость выше приведенной аксиомы можно обосновать следующим рассуждением. Пусть значением выражения e xA ( x ) будет произвольный индивид, удовлетворяющий свойству А(х), если предикат А(х) проинтерпретирован на непустой области объектов. Если же при данной интерпретации предикат А(х) пуст, то выражению e xA ( x ) сопоставляем любой индивид из универсума рассуждений. Пусть теперь формула А( t ) выполнена в интерпретации F при некоторой оценке f . Это означает, что предикат А(х) не пуст в интерпретации F . Ясно, что формула A ( e xA ( x )) также будет выполнена при данной интерпретации и оценке f . На самом деле A ( e xA ( x )) в рассматриваемом случае будет выполнена при любой оценке g . Если же формула А( t ) не выполнена в данной интерпретации ни при какой оценке, e xA ( x ) сопоставим b , где b – произвольный индивид из универсума рассуждений. Поскольку формула А( t ) не выполнена ни при какой оценке, формула A ( e xA ( x )) также не будет выполнена, какую бы оценку мы ни взяли, что и требовалось. В частности, если А( t ) истинна, то A ( e xA ( x )) также будет истинна, а если А( t ) ложна, то A ( e xA ( x )) также будет ложна. Фактически, именно такое понимание смысла оператора e было предложено Гильбертом и Бернайсом [8. C . 30].

Существенно, что построенное Гильбертом и Бернайсом исчисление предикатов, содержащее оператор e , не ведет к расширению класса формул, доказуемых в обычном исчислении предикатов. Точнее, если некоторая формула А, не содержащая символа e , доказуема в гильбертовском e -исчислении, то она будет доказуема и в исчислении предикатов первого порядка, не содержащем символа e . Иначе говоря, e -исчисление является консервативным расширением обычного исчисления предикатов. Исследования e -оператора В. А. Смирновым позволили распространить полученные школой Гильберта результаты на исчисления иных типов и на интуиционистскую логику. Эти новые, далеко идущие обобщения первоначально были изложены в седьмой, заключительной главе книги [16]. В дальнейшем В. А. Смирнов неоднократно обращался к проблематике e -исчислений, развивая и уточняя предложенный им подход.

Нас здесь будет интересовать, в первую очередь, сформулированное В. А. Смирновым несеквенциальное натуральное исчисление предикатов второго типа, предполагающее наличие прямых правил удаления для каждого логического знака, в том числе для квантора существования [16. C . 217]. Введение такого правила для квантора существования порождает проблему, связанную с обеспечением логического следования. Такого рода проблема возникает и в случае прямого правила введения квантора всеобщности. Переход (при линейном способе записи) А(х) ? " хА(х) нарушает логическое следование: А(х) может оказаться истинным при каком-то конкретном значении х, тогда как утверждение " хА(х) окажется ложным. Однако общезначимость формулы А(х) в каком-либо универсуме рассуждений гарантирует общезначимость и формулы " хА(х) в том же универсуме.

С квантором существования дело обстоит сложнее. Прямое правило удаления квантора существования $ хА(х) ? А( t ) не воспроизводит отношение логического следования и в том случае, когда формула $ хА(х) является универсально общезначимой. Например, формула $ х(Р(х) ® " уР(у)) универсально общезначима, но формула (Р( t ) ® " уР(у)) не общезначима. Неформальное доказательство общезначимости первой формулы заключается в следующем простом рассуждении. Свойство Р(х) выполняется либо для всех объектов универсума, либо не для всех. В первом случае в качестве индивида, существование которого утверждается, возьмем произвольный объект универсума, скажем, b . Поскольку Р( b ) истинно и " уР(у) истинно, импликация также Р( b ) ® " уР(у) истинна, а вместе с ней истинна и формула $ х(Р(х) ® " уР(у)). Например, в универсуме людей истинно утверждение “Все люди смертны”. Отсюда истинно “Если Сократ смертен, то и все смертны” и, следовательно, истинно “Существует такой человек, что если он смертен, то и все смертны”. Если же свойство Р(х) выполняется не для всех индивидов рассматриваемой области, то в качестве объекта, существование которого утверждается, возьмем любой из тех индивидов, который не удовлетворяет свойству Р(х). Например, пусть Р(х) означает “Добрый(х)”. Но не все люди добры. Так, маркиз де Сад не является добрым. Отсюда импликация “Если уж и маркиз де Сад добр, то тогда все добры” будет истинна в силу ложности антецедента. Следовательно, истинно экзистенциальное обобщение “Существует такой человек, что если он добр, то все добры”.