Смекни!
smekni.com

r > 0, следовательно, связь прямая.

|r|>0.65 – связь тесная

= 11.65%

= 0.90

Поскольку

>r, то кривая лучше аппроксимирует зависимость

3. Логарифмическая зависимость

y = a + b lnx

После замены lnx=z получим линейную зависимость, формулы для вычисления коэффициентов которой известны. После обратной замены получим:

lnX Y lnXY (lnX)^2 Y^2
1 12 2.48 130 323.04 6.17 16900
2 13 2.56 170 436.04 6.58 28900
3 12 2.48 110 273.34 6.17 12100
4 11 2.40 121 290.15 5.75 14641
5 15 2.71 130 352.05 7.33 16900
6 12 2.48 120 298.19 6.17 14400
7 11 2.40 110 263.77 5.75 12100
8 8 2.08 70 145.56 4.32 4900
9 12 2.48 140 347.89 6.17 19600
10 12 2.48 120 298.19 6.17 14400
11 13 2.56 150 384.74 6.58 22500
12 12 2.48 120 298.19 6.17 14400
13 14 2.64 200 527.81 6.96 40000
14 13 2.56 130 333.44 6.58 16900
15 15 2.71 240 649.93 7.33 57600
16 16 2.77 200 554.52 7.69 40000
17 17 2.83 290 821.63 8.03 84100
18 18 2.89 290 838.21 8.35 84100
19 17 2.83 200 566.64 8.03 40000
å 48.86 3041 8003.32 126.34 554441

a= -542.07

b=273.01

Уравнение аппроксимирующей логарифмической зависимости

X lnX Y
1 12 2.48 130 136.33 0.05 40.09 903.16
2 13 2.56 170 158.18 0.07 139.61 98.95
3 12 2.48 110 136.33 0.24 693.36 2505.27
4 11 2.40 121 112.58 0.07 70.95 1525.11
5 15 2.71 130 197.25 0.52 4522.87 903.16
6 12 2.48 120 136.33 0.14 266.73 1604.21
7 11 2.40 110 112.58 0.02 6.64 2505.27
8 8 2.08 70 25.64 0.63 1968.20 8109.48
9 12 2.48 140 136.33 0.03 13.46 402.11
10 12 2.48 120 136.33 0.14 266.73 1604.21
11 13 2.56 150 158.18 0.05 66.98 101.06
12 12 2.48 120 136.33 0.14 266.73 1604.21
13 14 2.64 200 178.42 0.11 465.85 1595.79
14 13 2.56 130 158.18 0.22 794.35 903.16
15 15 2.71 240 197.25 0.18 1827.37 6391.58
16 16 2.77 200 214.87 0.07 221.18 1595.79
17 17 2.83 290 231.42 0.20 3431.25 16886.32
18 18 2.89 290 247.03 0.15 1846.60 16886.32
19 17 2.83 200 231.42 0.16 987.41 1595.79
å 48.86 3041 3.18 17896.35 67720.95

r=0.86

r > 0, следовательно, связь прямая.

|r|>0.65 – связь тесная

=16.71%

=0.86

4. Вывод о возможности использования модели для прогнозирования

Для аппроксимации было использовано 3 вида зависимостей: прямолинейная, параболическая, логарифмическая.

прямолинейная параболическая логарифмическая
Уравнение
r 0.88 0.88 0.86
0.88 0.90 0.86
14.17 % 11.65% 16.71%

Во всех случаях связь прямая и тесная. Точнее всего аппроксимирует парабола, поскольку

>r,
минимальна и равна 11.65%.

Прямая аппроксимирует зависимость менее точно, т.к.

больше - 14.17 %.

Наименее точно аппроксимирует логарифмическая зависимость, т.к.

максимальна и равна 16.71%.

Вывод: наилучшая модель для прогнозирования – параболическая, наихудшая – логарифмическая. Это объясняется тем, что выпуклость данных кривых различна.

Задача 2

Используем линейную зависимость. Коэффициенты прямой находятся по формулам

X Y XY X^2 Y^2
1 6.3 3.2 20.16 39.69 10.24
2 1.1 0.5 0.55 1.21 0.25
3 2.9 1.2 3.48 8.41 1.44
4 2.5 1 2.5 6.25 1
5 2.3 0.5 1.15 5.29 0.25
6 4.7 1.6 7.52 22.09 2.56
7 2.5 0.8 2 6.25 0.64
8 3.6 1.3 4.68 12.96 1.69
9 5 2.1 10.5 25 4.41
10 0.7 0.3 0.21 0.49 0.09
11 7 3.2 22.4 49 10.24
12 1 0.5 0.5 1 0.25
13 3.1 1.4 4.34 9.61 1.96
14 2.8 1.8 5.04 7.84 3.24
15 1.4 0.3 0.42 1.96 0.09
16 1 0.4 0.4 1 0.16
17 5.1 2.3 11.73 26.01 5.29
18 2.6 1 2.6 6.76 1
19 3.8 1.3 4.94 14.44 1.69
20 2.5 1.3 3.25 6.25 1.69
61.9 26 108.37 251.51 48.18

Поле корреляции:

N=20

a = -0.14

b= 0.47 => y = -0.14 + 0.47x

X Y
1 6.3 3.2 2.79 0.13 0.17 3.61
2 1.1 0.5 0.37 0.26 0.02 0.64
3 2.9 1.2 1.21 0.01 0.00 0.01
4 2.5 1 1.02 0.02 0.00 0.09
5 2.3 0.5 0.93 0.86 0.18 0.64
6 4.7 1.6 2.05 0.28 0.20 0.09
7 2.5 0.8 1.02 0.28 0.05 0.25
8 3.6 1.3 1.54 0.18 0.06 4.93038E-32
9 5 2.1 2.19 0.04 0.01 0.64
10 0.7 0.3 0.19 0.38 0.01 1
11 7 3.2 3.12 0.03 0.01 3.61
12 1 0.5 0.32 0.35 0.03 0.64
13 3.1 1.4 1.30 0.07 0.01 0.01
14 2.8 1.8 1.16 0.35 0.41 0.25
15 1.4 0.3 0.51 0.70 0.04 1
16 1 0.4 0.32 0.19 0.01 0.81
17 5.1 2.3 2.23 0.03 0.00 1
18 2.6 1 1.07 0.07 0.00 0.09
19 3.8 1.3 1.63 0.25 0.11 4.93038E-32
20 2.5 1.3 1.02 0.21 0.08 4.93038E-32
61.9 26 4.69 1.39 14.38

Коэффициент корреляции r находится по формуле:

r

= 0.95

r > 0, следовательно, связь прямая.

|r|>0.65 – связь тесная

Корреляционное отношение

= 0.95

Точность аппроксимации

= 23.47%