Смекни!
smekni.com

Дійсні числа (стр. 2 из 6)

Факт існування несумірних відрізків не гальмував розвитку геометрії. Греки розробили теорію відношень відрізків, яка враховувала можливість їх несумірності; вони вміли порівнювати такі відношення за величиною, виконувати над ними арифметичні дії (в суто геометричній формі), інакше кажучи, користувалися такими відношеннями як числами.

Щоб позбутися ірраціональних чисел, греки вживали їх наближення, досить точні для практичних обчислень. В Архімеда ці наближення мали науковий характер. І хоч Герон Олександрійський при обчисленні площ добуває квадратний корінь з добутку чисел, а Діофант Олександрійський говорить уже про числа нераціональні, однак, ідея про те, що відношеня довжин несумірних відрізків можна розглядати як число, в грецькій математиці не була усвідомлена до кінця.

Отже: можна сказати, що у вирішенні проблеми в галузі розширення поняття про число греки майже нічого не зробили. Як для Евкліда, так і, по суті, для Діофанта існувало тільки ціле число.

Індійці і араби розглядали ірраціональні числа як числа нового виду. Вони не задумувались над тим, чи законно додавати, перемножувати, ділити ірраціональні числа. Так, наприклад, Бхаскара знищує ірраціональніcть у знаменнику, множачи чисельник і знаменник на той самий ірраціональний множник.

Термін “ірраціональний” у математичному розумінні вперше застосував у XIV ст.англійський математик Брадвардін (близько 1290-1349). Поняття числа з цим терміном пов’язує вперше (1544) німецький математик Штіфель. Але й він під час введення дій над ірраціональними числами вдається, як і Евклід, до відрізків.

Таким міркуванням властива загальна риса – ірраціональні числа не вважали повноправними числами. Але ці числа треба було розглядати, вивчати, бо зокрема, обчислюючи ірраціональні корені алгебраїчних рівнянь і логарифми чисел, визначаючи значення тригонометричних функцій і т.д., доводилося шукати їх достатні раціональні наближення і, по суті, оперувати ними як числами.

Велике значення для розвитку поняття ірраціонального числа мали праці Стевіна. Він був першим математиком, який повністю підтримував точку зору визнання повної рівноправності раціональних та ірраціональних чисел, однак, останні почали застосовувати разом з від’ємними числами тільки після появи геометрії Декарта (1637).

Ідея Декарта привела до узагальнення поняття про число. Між точками прямої і числами було встановлено взаємно однозначну відповідність. У математику була введена змінна величина.

До початку XVIII ст. сформувалися три тлумачення поняття ірраціональної величини:

1).ірраціональне число розглядали як корінь n-го степеня з цілого або дробового числа, коли результат добування кореня не можна виразити “точно” цілим або дробовим числом (найдавніше);

2).ірраціональне число трактували як межу, до якої його раціональні наближення можуть підійти як завгодно близько (це тлумачення йде від Стевіна і Валліса);

3).число розглядали як відношення однієї величини до другої величини такого самого роду, взятої за одиницю; коли величина несумірна з одиницею, число називали ірраціональним (Ньютон, Декарт).

Два останні означення ірраціонального числа довго не поширювались. Математики найчастіше трималися першого означення і говорили не про ірраціональні числа, а про ірраціональні величини. Тільки найпередовіші математики кінця XVII і початку XVIII ст.—Ньютон , Лейбніц та інші—вважали поняття ірраціонального числа об’єктивним, трактували його по-новому і широко застосовували в математиці.

У другій половині XVIIIст., у зв’язку з дальшим розвитком механіки і математики, об’єктивність поняття ірраціонального числа набуває ширшого визнання. Третє означення ірраціонального числа стає на перше місце і повсюдно проникає в літературу. Водночас дещо розвивається і друге тлумачення поняття ірраціонального числа. Так, Ейлер, Ламберт та інші вчені встановили, що нескінченний періодичний дріб завжди є раціональним числом. Тому ірраціональне число є нескінченним неперіодичним дробом. Однак аж до другої половини XIXст.не було розроблено загальної теорії ірраціональних чисел.

Остаточного розвитку теорія ірраціональних чисел набула тільки в другій половині XIXст.у працях німецьких математиків Дедекінда, Кантора і Вейєрштрасса.


РОЗДІЛ ІІ. “Дійсні числа”

§1. Множина раціональних чисел

Учні 8-го класу часто зустрічали крім раціональних чисел ще й числа іншої природи – до них часто приводить операція добування квадратного кореня (і не тільки вона). Отже, треба більш досконало познайомитися з новими числами. Але для цього доцільно було б систематизувати знання учнів про вже відомі, тобто раціональні, числа.

1.1. Деякі символи математичної мови.

Учням добре відомі натуральні числа:

1, 2, 3, 4, …

Множина всіх натуральних чисел позначається буквою N.

Якщо до натуральних чисел приєднати число 0 і всі цілі від’ємні числа:

-1, -2, -3, -4,…

то одержиться множина цілих чисел. Цю множину позначають буквою Z.

якщо до множини цілих чисел приєднати всі дробові числа:

2/3, 15/8, -33/58,…

то одержиться множина раціональних чисел. Цю множину позначають буквою Q.

Будь-яке ціле число m можна записати у вигляді дробу m/1, тому можна твердити, що

Множина Q раціональних чисел—це множина, яка складається із чисел виду m/n, -m/n (де m,n – натуральні числа) і числа 0.

Використовуючи введені позначення N,Z,Q бажано ввести наступне:

замість “n –натуральне число “ можна писати nєN(і читатиметься: “елемент n належить множині N”). Математичний символ є називають знаком належності; аналогічно записують mєZ (“m – ціле”), rєQ (“r – раціональне число”).Зрозуміло, що N – частина множини Z, а Z – частина множини Q. Для зображення даної ситуації в математиці також є спеціальне позначення:

NZ, ZQ

Математичний символ називають знаком включення (однієї множини в іншу).

Взагалі, в математиці запис хєХ позначає те, що х—один з елементів множини Х. Запис АВ означає, що множина А є частиною множиниВ. Математики частіше кажуть: А—підмножина множини В.

Потрібно звернути увагу учнів на те, що множини в математиці позначають великими літерами, а елементи множин—маленькими .

А також звернути увагу на те, що знаки належності і включення—різні, відповідно і .

Для того щоб записати, що елемент х не належить множині Х або що множина А не є підмножиною множини В, використовують ті ж символи, але перекреслені: х Х, А В.

Доцільно було б навести кілька прикладів використання введених математичних символів для скорочення запису справедливих математичних тверджень—їх називають також істинними висловленнями.

Приклад1.

А) 5 N, 5Z, 5Q;

Б) -7N, -7Z, -7Q;

B) 3,5 N, 3,5 Z, 3,5Q;

Г) N, Z, Q;

Приклад 2.

2[1,3]; 1[1,3]; 1(1,3).

Приклад 3.

А) NZ, ZN, ZQ, QZ;

Б) (1,3)[1,3], [1,3](1,3),[1,3](0,+∞),[2,5](3,8).

1.2. Раціональні числа як нескінченні десяткові періодичні дроби.

До раціональних чисел, як вже не раз підкреслювалось, відносяться всі ті числа, з якими учні успішно оперували до тих пір,поки не зустрілись з квадратними коренями. Це були цілі числа, звичайні дроби і десяткові дроби. Для всіх цих чисел використовується один і той же спосіб запису, який би доцільно обговорити.

Розглянемо, наприклад, ціле число 5, звичайний дріб 7/22 і десятковий дріб 8,377. Ціле число 5 можна записати у вигляді нескінченного десяткового дробу: 5,00000… Десятковий дріб 8,377 також можна записати у вигляді нескінченного десяткового дробу: 8.3770000… Для числа 7/22 використаємо метод “ділення кутом”:

7,000000… 22

-66 0,31818…

40

-22

180

-176

40

-22

180

Звідси видно, що починаючи з другої цифри після коми, відбувається повторення однієї і тієї ж групи цифр: 18, 18, 18,… Таким чином, 7/22=0,3181818… Скорочено це записують так: 0.3(18)

Група цифр після коми, яка повторюється, називається періодом, а сам десятковий дріб—нескінченним десятковим періодичним дробом.

Між іншим, і число 5 можна подати у вигляді нескінченного періодичного дробу. Для цього треба в періоді записати число 0:

5=5,00000…=5,(0).

Аналогічно число 8,377:

8,377=8,377000…=8,377(0)

Щоб все було акуратно, кажуть так: 8,377—скінченний десятковий дріб, а 8,377000…-- нескінченний десятковий дріб.

Таким чином, і число 5, і число 7/22, і число 8,377 вдалося записати у вигляді нескінченного періодичного десяткового дробу.

Взагалі, будь-яке раціональне число можна подати у вигляді нескінченного періодичного десяткового дробу.

Зауваження.

Це пояснення зручне для теорії, але не дуже зручне для практики. Адже, якщо дано скінченний десятковий дріб 8,377, то для чого потрібний його запис у вигляді 8.377(0)? Тому кажуть так:

Будь-яке раціональне число можна записати у вигляді скінченного десяткового дробу або у вигляді нескінченного періодичного десяткового дробу.

Вище було показано, як звичайний дріб подають у вигляді нескінченного періодичного десяткового дробу. Справедливе і обернене: будь-який нескінченний десятковий періодичний дріб можна подати у вигляді звичайного дробу. Це означає, що будь-який нескінченний періодичний десятковий дріб є раціональне число.

Потрібно показати на прикладі, як нескінченний періодичний десятковий дріб перетворюють в звичайний дріб.

Приклад. Записати у вигляді звичайного дробу нескінченний періодичний десятковий дріб:а)1,(23); б)1,5(23).

Розв'язання

А) нехай х=1.(23), тобто х=1,232323… Домножимо х на таке число, щоб кома перенеслася вправо рівно на один період. Оскільки в періоді є дві цифри, то число х помножимо на 100. Отримаємо:

_ 100х=123.232323…

і х=1,232323…

100х-х=123,232323…-1,232323…,

99х=122

звідки знаходимо х=122/99

Отже, 1,(23)=122/99.

Б) Нехай х=1.5(23)=1,5232323…Спочатку помножимо х на 10, щоб в отриманому добутку період починався після коми: 10х=15,232323… Тепер число 10х помножимо на100—тоді кома перенесеться рівно на один період вправо: 1000х=1523.2323… Маємо