Смекни!
smekni.com

Дійсні числа (стр. 4 из 6)

В молодших класах учні вже зустрічались з поняттям модуля (або абсолютної величини) числа, користувалися позначенням │а│. Вони знають, що, наприклад │5│=5, │-3│=3. Правда, раніше мова йшла лише про раціональні числа. Тепер потрібно ввести поняття модуля для будь-якого дійсного числа.

Означення.Модулем невід’ємного дійсного числа називають саме це число: │х│=х; модулем від’ємного дійсного числа х називають протилежне число: │х│=-х.

Скорочено це записують так:

(1).

Наприклад: │5│=5; │-5│=-(-5)=5; │-3,7│=-(-3,7)=3,7; │-2│=-2 (бо -2>0); │-3│=-(-3)=3- (бо -3<0).

На практиці використовують різні властивості модулів, наприклад:

1. │а│≥0;

2. │ab│=│a││b│;

3.;

4.│a│2=a2;

5. │a│=│-a│.

4.2. Геометричний зміст модуля дійсного числа.


Будемо розглядати множину R дійсних чисел і її геометричну модель –числову пряму. Позначимо на прямій дві точки а і b (а,b дійсні числа), позначимо через ρ(а,b) відстань між точками а і b. Ця відстань дорівнює b-а, якщо b>a, якщо a>b, вона дорівнює а-b, а якщо а=b то відстань рівна нулеві.

Всі три випадки виражаються формулою:

ρ(а,b)= │a-b│.

Приклад 1. розв'язати рівняння:

а) │х-2│=3; б) │х+3,2│=2; в)│х│=2,7; г)│х-│=0;

Розв'язування.

А) Переведемо аналітичну модель │х-2│=3 на геометричну мову: нам потрібно знайти на числовій прямій такі точки х, які задовільняють умову ρ(х,2)=3, тобто віддалені від точки 2 на відстань, яка рівна 3. Це точки –1 і 5. Звідси рівняння має два корені: -1 та 5.

Б). Рівняння │х+3,2│=2 перепишемо у вигляді │х-(-3,2)│=2 і далі ρ(х,-3,2)=2. На числовій прямій є дві точки які віддалені від точки –3,2 на відстань рівну 2. Це точки –5,2 і –1,2. Отже рівняння має два корені: -5,2 і –1,2.

В). Рівняння │х│=2,7 перепишемо у вигляді │х-0│=2,7, або ρ(х,0)=2,7. На числовій прямій є дві точки віддалені від точки 0 на відстань 2,7. Це точки –2,7 і 2,7. Таким чином рівняння має 2 корені: -2,7 і 2,7.

Г). Для рівняння │х-│=0 можна не використовувати геометричну ілюстрацію, бо якщо │а│=0, то а=0. Тому х-=0, тобто х=.

Приклад 2. Розв'язати рівняння:

а) │2х-6│=8; б) │5-3х│=6; в) │4х+1│=-2.

Розв'язування.

а) Маємо │2х-6│=│2(х-3)│=│2││х-3│=2│х-3│=8, отже дане рівняння можна спростити │х-3│=4.

Переведемо його на геометричну модель: нам потрібно знайти такі точки х на числовій прямій, які задовільняють умову ρ(х,3)=4, тобто віддалені від точки 3 на відстань рівну 4. Це точки –1 і 7. Отже рівняння має два корені –1 і 7.

б) Маємо│5-3х│=│(-3)(х-)│=│-3││х-│=3│х-│. Це рівняння можна перетворити 3│х-│=6 звідки │х-│=2, аналогічно попереднього рівняння маємо ρ(х, )=2. В результаті одержимо точки - і , тому рівняння має два розв'язки - і .

В) Для рівняння│4х+1│=-2 ніяких перетворень робити не треба. Воно не має коренів, тому, що у лівій його частині є невід’ємний вираз, а в правій від’ємне число.

4.3. Функція y=│х│.


Для будь-якого дійсного числа х можна обчислити │х│, тобто можна говорити про функцію y=│х│. Скористувавшись співвідношенням (1) можна записати:

Побудову графіка будемо здійснювати “частинами”. Спочатку будуємо пряму у=х і виділимо її частину на промені [0,+∞) (мал.1). потім будуємо пряму у=-х і виділимо частину на (-∞,0) (мал.2). тепер обидві частини зобразимо в одній системі координат –це і є графік функції y=│х│ (мал.3).

Приклад 3. Побудувати графік функції у=│х+2│.

Розв'язування.

Графік цієї функції отримується з графіка функції y=│х│ зміщенням останнього на дві одиниці масштабу вліво (мал.4).

4.4. Тотожність =│а│.

Ми знаємо, що якщо а≥0, то =а. А якщо а≤0? Написати =а не можна, бо а<0 і буде<0, а це неправильно бо значення квадратного кореня невід’ємне. З’ясуємо чому рівний вираз при а<0.

За означенням квадратного кореня у результаті повинно вийти таке число, яке по-перше додатнє, і по-друге при піднесенні до квадрату повинно дорівнювати підкореневому виразу, тобто а2. Таким числом буде а, якщо: 1) а>0, 2) (-а)22. Отже,

а, якщо х≥0;

=

-а, якщо а≤0.

Структура отримана в правій частині співпадає із співвідношенням (1). Отже, і │а│--одне і теж. Цим ми довели важливу тотожність: =│а│. В ролі аможе бути будь-який числовий або алгебраїчний вираз.

Приклад 4. Спростіть вираз , якщо: а) а-1>0; б)а-2<0.

Розв'язування.

Оскільки =│а-1│, то

А) якщо а-1>0, =а-1;

Б) якщо а-1<0, =-(а-1)=1-а.

Приклад 5. Спростіть вираз , якщо а<0.

Розв'язування.

Маємо , оскільки за умовою а<0, то │а│=-а. Врезультаті маємо:

.


§5. Наближені значення дійсних чисел.

В 7-му і 8-му класах учні часто розв'язували задачі графічним методом. Але в цих рівняння х були корені, які в системі координат зоображались без труднощів. Але так буває не завжди.


Розглянемо два рівняння =2-х і =4-х. Перше рівняння має єдиний корінь х=1, тому, що графіки функцій у= і у=2-х перетинаються в одній точці А(1,1) (мал.1). В другому випадку графіки функцій також перетинаються в одній точці В (мал.2), але з “поганими” координатами.

Користуючись малюнком, можна зробити висновок, що абсциса точки В приблизно рівна 2,5. В таких випадках говорять не про точний, а про приблизний розв'язок рівняння і записують так: х≈2,5.

Це одна з причин, чому математики вирішили ввести поняття наближеного значення дійсного числа. Є і інша причина, більш важлива. Що таке дійсне число? Це нескінченний десятковий дріб. Але проводити обчислення з нескінченними десятковими дробами незручно, тому на практиці користуються наближенними значеннями дійсних чисел. Наприклад для числа π=3,141592…, користуються наближенням π≈3,141 або π≈3,142. Перше називають наближеним значенням числа з недостачею з точністю до 0,001, друге—з надлишком. Можна вибрати і більш точні наближення: наприклад π≈3,1415 –наближення з недостачею з точністю 0,0001, або π≈3,1416 –наближення з надлишком з точністю 0,0001. Також можна взяти менш точні наближення, скажемо, з точністю 0,01: з недостачею π≈3,14, або з надлишком π≈3,15.

Приклад 1. Знайти наближене значення з надлишком і з недостачею з точністю до 0,01 для числа: а); б) .

Розв'язування.

А) Ми знаємо, що =2,236…, тому , ≈2,23 з недостачею і ≈2,24 знадлишком.

Б) Маємо =0,3(18). Тому ≈0,31 з недостачею і ≈0,32 з надлишком.

Наближення з недостачею і надлишком іноді ще називають округленням числа.

Означення. Похибкою наближення (абсолютною похибкою) називають модуль різниці між точним значенням величини х і її наближенням а -│х-а│.

Виникає практичне запитання, яке наближення краще, з надлишком чи з недостачею, тобто в якому випадку похибка менша? Це, звичайно залежить від конкретного числа для якого складають наближення, тобто округлення. Як правило при округленні додатніх чисел використовують слідуюче правило.

Правило округлення.Якщо перша відкидаюча цифра менша 5, то треба брати наближення з недостачею, якщо ж перша відкидаюча цифра більша або рівна 5, то беруть наближення з надлишком.

Застосуємо це правило до деяких чисел і виберемо для них ті наближення для яких похибка буде найменша.

1)π=3,141592…, з точністю до 0,001 маємо π≈3,142, тут перша цифра, яка відкидається, 5 тому взяли наближення з надлишком. З точністю до 0,0001 маємо π≈3,1416 також наближення з надлишком. А ось з точністю до 0,01 треба взяти наближення з недостачею: π≈3,14.

2)=2,236…, при наближенні з точністю до 0,01 маємо ≈2,24—наближення з надлишком.

Якщо а—наближене значення числа х і │х-а│≤h, то кажуть, щопохибка наближення не перевищує h або що число х рівне числу а з точністю до h.

РОЗДІЛ IІІ.Методика викладання даної теми в школі.

Нагадаємо, що в математиці відомо кілька теорій дійсних чисел ( Р.Дедекінда, Г.Кантора, К.Вейєрштрасса, Є.Я.Ремеза та інші ). Проте ні одна з них не зрозуміла учням. Можна з певністю сказати, що в шкільному курсі математики це одна із тем, яка б засвоювалася учнями так важко, як тема про ірраціональні числа. Тому вчитель повинен особливо добре продумувати всю систему уроків пов’язаних з цією темою.

З усіма раціональними числами –цілими і дробовими, додатними і від’ємними–учні познайомились ще в V класі, але в VIII класі, перед введенням ірраціональних чисел, бажано систематизувати їх знання. Зробити це можна, наприклад, так:

-Вам вже відомі цілі і дробові (додатні, від’ємні і нуль) числа. Всі вони, взяті разом, називаються раціональними числами. Бо кожне таке число можна подати у вигляді частки , де m– число ціле, а n– натуральне. Досі вам були відомі тільки раціональні числа, а існують і інші, нераціональні. Але перш ніж ознайомитись з ними, необхідно розглянути питання про десятковий запис раціональних чисел…

Далі на конкретних прикладах слід пояснити, що кожен звичайний дріб можна перетворити на десятковий. При цьому в одних випадках дістанемо скінченний десятковий дріб, а в інших—нескінченний, але обов’язково періодичний. Наприклад, ділячи 8 на 37 і 7 на 12, покажемо, що =0,216216…=0,(216), =0,5833…=0,58(3).

Зауваживши, що і скінченний десятковий дріб і ціле число можна зображати у вигляді нескінченного періодичного десяткового дробу з нулем в періоді: 3,6=3,6000…=3,6(0), 12=12,000…=12,(0). Формулюємо висновок. Кожне раціональне число можна подати у вигляді нескінченного періодичного десяткового дробу і кожен нескінченний періодичний десятковий дріб відповідає деякому раціональному числу.