Смекни!
smekni.com

Дійсні числа (стр. 5 из 6)

Перед вчителем стоїть завдання – створити основу для введення ірраціональних чисел. Ця тема складна для вивчення, тому її треба викласти доступно, без багатьох означень і доведень.

Відразу ж після ознайомлення учнів з арифметичним квадратним коренем можна пояснити учням, що не існує раціонального числа, квадрат якого дорівнює 2, і розглянути графічний спосіб розв'язування рівняння х2=2 (мал. ). Учні помічають, що пряма y=2 перетинає параболу у=х2 в двох точках з абсцисами і -. Отже, дане рівняння має два корені. А за теоремою можна сказати що рівняння не може мати раціональних коренів. Виходить, числа і - не раціональні. Так само не є раціональними числа та багато інших. Їх називають ірраціональними числами. Як бачимо, основною тут є теорема про те, що не існує раціонального числа квадрат якого дорівнює 2. Її доведення розглядається ще в “Началах” Евкліда (кінець Х книги). Доведення не складне і навчальне, в сильніших класах бажано його розглянути.

У методичній літературі найчастіше розглядають два способи доведення цієї теореми. Один з них грунтується на такому твердженні: “ якщо числа m і n взаємно прості, то і числа m2і n2 взаємно прості”. Проте це твердження не відоме учням, тому його не варто використовувати в доведенні. Розглядувану теорему краще доводити так : “ так як 12=1<2, і 22=4>2 а квадрати цілих чисел більших за 2, ще більші, то не існує цілого числа, квадрат якого дорівнював би 2.

Припустимо тепер, що існує якесь дробове число, квадрат якого рівний 2. Вважатимемо, що це число виражене незворотним дробом . Але якщо , то m2=2n2, тобто, число m2—парне. А тоді й m парне бо квадрат непарного число непарне (це випливає з тотожності (2k+1)2=4k2+4k+1). Таким чином, з припущення випливає, що m=2р, де р-якесь натуральне число. Але тоді (2р)2=2n2, звідси n2=2р2 отже число n також парне. Як бачимо, кожне з чисел m і n ділиться на 2, а це суперечить тому, що дріб нескоротний. Виходить зроблене припущення не правильне.

Отже, ні цілого, ні дробового раціонального числа, квадрат якого дорівнював би 2, не існує. Теорему доведено.

Після доведення цієї теореми бажано запропонувати учням (як задачу) довести, що не існує раціонального числа, квадрат якого дорівнював би, наприклад 5.

Зауважимо, що в деяких посібниках замість розглянутої теореми доводиться більш загальна. “Якщо натуральне число не є квадратом цілого числа, то воно не може бути і квадратом дробу”. З цієї теореми безпосередньо випливає справедливість розглянутих вище тверджень.

Після таких пояснень можна показати учням, навіщо потрібні ірраціональні числа. Це питання корисно пов’язати з вимірюванням величин, найкраще довжин відрізків. Нехай треба виміряти діагональ х квадрата, сторона якого дорівнює одиниці довжини. За теоремою Піфагора маємо: х2=2.

Але вище було доведено, що не існує раціонального числа, квадрат якого рівний 2. Як бачимо довжину діагоналі такого квадрата не можна точно виразити ніяким раціональним числом. Залишається одне з двох: або вважати, що не кожен відрізок має довжину (а це незручно в багатьох відношеннях), або розширити поняття множини раціональних чисел. Краще йти другим шляхом. Подібно до того, як раніше множину натуральних чисел доповнювали дробовими, тепер доповнимо множину раціональних чисел ірраціональними.

-Звернімося до числової осі. Як відомо, кожному раціональному числу на числовій осі відповідає одна точка. А чи кожній точці відповідає раціональне число? Відкладемо від початкової точки О числової осі відрізок ОD (мал.1. Розділ ІІ, §3), що дорівнює діагоналі одиничного квадрата. Оскільки довжину цієї діагоналі не можна точно виразити раціональним числом, то точці А не відповідає ніяке раціональне число. І таких точок існує на числовій прямій безліч. Для того щоб кожному відрізкові можна було б поставить у відповідність якесь число –його довжину необхідно розширити множину раціональних чисел –ірраціональними.

Довжина діагоналі квадрата з одиничною стороною буде дорівнювати ≈1,4142135…, тобто деякому нескінченному неперіодичному десятковому дробу.

Раніше ми розглядали тільки раціональні числа. Тепер будемо оперувати ірраціональнимим --деякими нескінченноми неперіодичноми десятковоми дробами.

Приклади ірраціональних чисел:

Все це додатні ірраціональні числа, але вони бувають і від’ємними, наприклад:

Раціональні і ірраціональні числа разом називаються дійсними.

Вводити дійсні числа можна за відомою учням схемою. Натуральні числа, нуль і протилежні натуральним числа, становлять множину цілих чисел. Числа цілі і дробові становлять множину раціональних чисел. Аналогічно: раціональні і ірраціональні числа становлять множину дійсних чисел. Сказане вище бажано ілюструвати конкретними прикладами і за допомогою схеми.

Тепер уже можна пояснити, що в множині дійсних чисел кожен відрізок має свою довжину. Довжина може виражатися раціональним або ірраціональним числом. Іноді пояснюють, що “ ірраціональні числа виражають довжини несумірних відрізків”, причому коли вживаємо термін “несумірний”, то обов’язково повинні зазначити, з чим саме цей відрізок несумірний.Тому цю думку можна сформулювати інакше :”Додатні ірраціональні числа виражають довжини відрізків, несумірних з одиничним


відрізком”.


Далі вводять поняття модуля дійсного числа і переходять до порівняння дійсних чисел.

Два дійсних числа можна вважати рівними, якщо вони мають однакові модулі і однакові знаки. Наприклад, . Ці числа додатні, мають однакові цілі частини, однакові дробові частини, тому .

Якщо дійсні числа відрізняються знаками, або модулями, то вони не рівні. Наприклад, числа не дорівнюють одне одному, бо в них різні модулі. А яке ж з них більше? В них цілі частини однакові і десяті частини однакові, а соті різні. Перше число має менше сотих ніж друге тому .

Порівняємо раціональне число з ірраціональним. Наприклад, . Ці числа мають відповілно однакові цифри цілих, десятих, сотих і тисячних частин, а десятитисячних частин в першому немає (вважається, що цифра десятитисячних тут дорівнює 0), а в другому є 2 десятитисячних. Тому друге число більше від першого: . Після таких прикладів учням корисно сформулювати висновки.

З двох дійсних додатних чисел більше те, в якого більша ціла частина, у випадку коли цілі частини рівні, коли десята частина більша і т. д. Порівняння дійсних чисел, з яких хоч одне від’ємне або нуль, виконують за такими самими правилами, які раніше були сформульовані для раціональних чисел. Будь-яке від’ємне число менше за будь-яке додатнє і нуль, з двох від’ємних чисел менше те у якого модуль більший.

Дії над дійсними числами.

Питання про дії над дійсними числами досить складне для учнів. Часто трапляється, що учитель дуже довго розглядає означення і правила цих дій, а в учнів залишаються від цього лише якісь туманні згадки.

В таких випадках краще пояснювати так:

-Ви ще раніше виконували дії над раціональними і ірраціональними числами. Проте тоді не з’ясовували, який зміст мають ці дії, не пояснювали, наприклад, що називається сумою двох дійсних чисел, коли хоч одне з них –ірраціональне число. Тепер розглянемо ці питання. Почнемо з додавання дійсних чисел.

Нехай, наприклад, треба додати два числа: . З’єднаємо їх знаком “+” і дістанемо: . Так записують суму чисел . Але що розуміють під сумою цих чисел? Під сумою двох дійсних чисел розуміють деяке дійсне число. Але яке саме? Щоб відповісти на це запитання, розглянемо десяткові наближення з недостачею і з надлишком кожного з доданків:

Додамо наближене значення з недостачею числа з будь-якою точністю і відповідне наближене значення з недостачею числа , дістанемо наближене значення суми з недостачею. Випишемо послідовність таких наближених значень з недостачею: 6;6,2;6,30;6,303;6,3037;…

Аналогічно випишемо послідовність наближених значень з надлишком: 6;6,4;6,32;6,305;6,3039;…

Можна було б довести, що існує єдине дійсне число s, яке більше кожного з чисел першої послідовності і менше кожного з чисел другої. Число s і називається сумою даних чисел . Взагалі , сумою двох дійсних додатних чисел a і b називається таке третє число, яке більше від усіх сум відповідних десяткових наближень цих чисел з недостачею, але менше від усіх сум відповідних десяткових наближень цих чисел з надлишком.

Далі слід зауважити без доведення, що так означена дія додавання дійсних чисел завжди можлива і однозначна, що для неї справедливі переставний і сполучний закони і, нарешті, що вона відповідає вже відомому учням додаванню відрізків. Якщо маємо два відрізки, довжини яких виражаються деякими дійсними числами a і b, то довжина третього відрізка, який дорівнює сумі двох перших, виражається дійсним числом, що дорівнює сумі чисел a і b.

Після таких пояснень учням варто зауважити, що при знаходженні суми дійсних чисел не треба кожного разу виписувати “трикутники чисел” і складати дві послідовності. Раніше це робилося тільки для того, щоб з’ясувати, що треба розуміти під сумою дійсних чисел. Знаходження наближених значень суми можна здійснювати за допомогою одноразового додавання відповідних наближень доданків. Наприклад, коли потрібно визначити з точністю до тисячних суму чисел , то роблять так: .

Аналогічно можна знайти наближене значення суми даних дійсних чисел з якою завгодно точністю, тільки для цього треба мати наближені значення доданків з достатньою точністю. Точні ж значення цієї суми виражаються нескінченним неперіодичним десятковим дробом.

Також корисно звернути увагу учнів на те, що в окремих випадках сума двох ірраціональних чисел може виражатися або скінченним, або нескінченним періодичним десятковим дробом. Наприклад, сума двох ірраціональних чисел 0,11011001100011… і 0,00100110011100… дорівнює 0,111111… , а це число раціональне. Але якщо одне з чисел ірраціональне, а друге раціональне, то їх сума завжди ірраціональне. Це можна довести методом від супротивного, враховуючи, що ніяке ірраціональне число не дорівнює раціональному.