Смекни!
smekni.com

Бульові функції (стр. 2 из 2)

(a1, a2, …, ai-1, 0, ai+1, …, an) і (a1, a2, …, ai-1, 1, ai+1, …, an),

така, що

f(n)(a1, a2, …, ai-1, 0, ai+1, …, an) ¹ f(n)(a1, a2, …, ai-1, 1, ai+1, …, an).

Змінна xi називається несуттєвою у противному разі, тобто коли за всіх можливих пар наборів значень

(a1, a2, …, ai-1, 0, ai+1, …, an) і (a1, a2, …, ai-1, 1, ai+1, …, an)

мають місце рівності:

f(n)(a1, a2, …, ai-1, 0, ai+1, …, an) = f(n)(a1, a2, …, ai-1, 1, ai+1, …, an).

Наприклад, неважко переконатися, що всі змінні функції h1 з прикладу 1 є суттєвими. Функція h2 має суттєву змінну x і несуттєву y. Функція двох змінних, задана як вектор (1111), не має суттєвих змінних.

Еквівалентні формули та закони

Одна й та сама бульова функція задається, взагалі кажучи, багатьма різними формулами. Наприклад, неважко переконатися, що формули x®y і ØxÚy обидві задають функцію (1101). Таким чином, можна говорити про еквівалентність цих двох формул.

Означення. Нехай **** Формули F1 і F2 називаються еквівалентними, якщо

2. Бульові функції та комбінаційні схеми

І-елемент АБО-елемент Å-елемент НЕ-елементa a a b r b r b r a r r = aÙb r = aÚb r = aÅb r = Øa

Розглянемо реалізацію бульових функцій у вигляді комбінаційних схем. Найпростішими з них є логічні елементи, відповідні бульовим функціям: кон'юнкції Ù, диз'юнкції Ú, додавання за модулем 2 Å та заперечення Ø. Вони позначаються й зображаються таким чином:

Входи перших трьох елементів вважаються симетричними згідно законів комутативності, яким задовольняють кон'юнкція, диз'юнкція та додавання за модулем 2.

З наведених логічних елементів будуються складніші схеми, які в загальному випадку мають n входів і m виходів і реалізують набір з m функцій від n аргументів:


a1 b1

a2 b2

.

.

.

an bm


Тут bj=fj(a1, a2, …, an), j=1, 2, …, m..

Приклади.

1. Побудуємо схему з І-, АБО- та НЕ-елементів, яка реалізує функцію Å. Виразимо її за допомогою функцій набору {Ù, Ú, Ø}:

xÅy = xÙØyÚØxÙy.


x


y


Звідси відповідна схема має вигляд:

2. Побудуємо схему з І- та Å-елементів, яка реалізує функцію Ú. Виразимо її за допомогою функцій набору {Ù, Å, 1}:

xÚy = xÅyÅxÙy.

Звідси відповідна схема має вигляд:


x


y


3. Побудуємо схему з І-, АБО- та НЕ-елементів, яка реалізує так званий "однорозрядний напівсуматор"[****] з двома симетричними входами x, y і двома виходами: s = xÅy, d = xÙy. З цих формул видно, що схема має реалізувати додавання двох однорозрядних чисел із переносом. Виразимо s за допомогою функцій набору {Ù, Ú, Ø}: s = xÙØyÚØxÙy. Тоді схема має вигляд:


x s


d

y


3. Замкнені та повні набори функцій. Критерій Поста повноти набору функцій

У підрозділі 7.1 ми побачили, що будь-яку бульову функцію можна задати як суперпозицію функцій з набору {Ù, Ú, Ø} або з набору {Å, Ù, 1}.

Означення. Множина всіх функцій, що є суперпозиціями функцій деякого набору F, і лише їх, називається замиканням цього набору й позначається [F].

Таким чином, якщо P2 позначає множину всіх бульових функцій, то

[{Ù, Ú, Ø}] = [{Å, Ù, 1}] = P2.

Означення. Множина функцій F називається функціонально повною, якщо [F]=P2.

Отже, множини {Ù, Ú, Ø} і {Å, Ù, 1} є функціонально повними.

Природним є питання про те, які властивості повинні мати функціонально повні множини функцій.

Видатний математик Еміль Пост сформулював і обгрунтував критерій повноти множини функцій у загальному випадку алгебри функцій з операцією суперпозиції. У цьому критерії, тобто необхідній і достатній умові, використовується поняття передповного класу. Розглянемо його.

Нехай F позначає множину всіх можливих функцій деякої алгебри функцій A з операцією суперпозиції.

Означення. Множина функцій S називається передповним класом алгебри A, якщо [S]¹F і за будь-якої функції f з множини F\S набір SÈ{f} є повним: [SÈ{f}]=F.

Критерій Поста. Нехай S1, S2, … – усі передповні класи алгебри функцій F. Множина функцій M є повною тоді й тільки тоді, коли для кожного передповного класу Si множина M містить fÎM\Si.

Приймемо це твердження без доведення.

Пост також дослідив передповні класи алгебри бульових функцій. Їх виявилося лише 5. Це множини всіх функцій:

що зберігають сталу 0,

що зберігають сталу 1,

самодвоїстих,

лінійних,

монотонних.

Означимо вказані функції.

Означення. Функція f(n)зберігає сталу 0, якщо на нульовому наборі має значення 0: f(n)(0, 0, …, 0)=0.

Означення. Функція f(n)зберігає сталу 1, якщо на одиничному наборі має значення 1: f(n)(1, 1, …, 1)=1.

Наприклад, тотожна функція f(x)=x зберігає сталі 0 і 1, функція f(x)=Øx не зберігає жодної.

****Двоїста до …

Означення. Функція f(n) є самодвоїстою, якщо для всіх пар протилежних наборів вона приймає на них протилежні значення:

f(n)(a1, a2, …, an) = ****f(n)(a1, a2, …, an) зберігає сталу 0, якщо на нульовому наборі має значення 0: f(n)(0, 0, …, 0)=0.

Означення. Функція f(n) зберігає сталу 1, якщо на одиничному наборі має значення 1: f(n)(1, 1, …, 1)=1.

Неважко переконатися, що множини означених функцій, позначені відповідно T0, T1, S, L, M, є замкненими класами.


Список рекомендованої літератури

1. Виленкин Н.Я. Популярная комбинаторика.–М.: Наука, 1975.

2. Гаврилов Г.П., Сапоженко А.А. Сборник задач по дискретной математике.–М.: Наука, 1973.

3. Гильберт Д., Бернайс П. Основания математики. Логические исчисления и формализация арифметики.–М.: Наука, 1982

4. Глушков В.М., Цейтлин Г.Е., Ющенко Е.Л. Алгебра. Языки. Программирование.–К.: Наукова думка, 1988.

5. Ершов Ю.Л., Палютин Е.А., Математическая логика.–М.:Наука, 1979.

6. Карри Х.Б. Основания математической логики.–М.: Мир, 1969.

7. Клини С.К. Математическая логика.– М.: Мир, 1973.

8. Колмогоров А.Н. Фомин С.В. Элементы теории функций и функционального анализа.–М.: Наука, 1981.

9. Кузнецов О.П., Адельсон-Вельский Г.М. Дискретная математика для инженера.–М.:Энергоатомиздат, 1988.

10. Курош А.Г. Лекции по общей алгебре.–М.: Наука, 1973.

11. Лавров И.А., Максимова Л.Л. Задачи по теории множеств, математической логике и теории алгоритмов.–М.: Наука, 1984.

12. Линдон Р. Заметки по логике.– М.: Мир, 1968.

13. Мендельсон Э. Введение в математическую логику.–М.: Наука, 1984.

14. Новиков П.С. Элементы математической логики.–М.: Наука, 1973.

15. Ставровський А.Б., Коваль Ю.В. Методичні рекомендації та вказівки до курсу "Дискретна математика" (розділ "Множини та відповідності").– К.:"Київський університет", 1994.

16. Трохимчук Р.М. Збірник задач з дискретної математики (розділ "Множини і відношення") для студентів факультету кібернетики.–К.:"Київський університет", 1997.

17. Трохимчук Р.М. Множини і відношення. Навчальний посібник для студентів факультету кібернетики.–К.:"Київський університет", 1993.

18. Грэхем Р., Кнут Д., Паташник О. Конкретная математика. М.: Мир, 1998.

19. Липский В. Комбинаторика для программистов. М.: Мир, 1988.