Смекни!
smekni.com

Ядерная физика и строение Солнца (стр. 1 из 2)

Введение

Большинство людей, не имеющих отношения к науке, думают, что ядерная физика - что-то очень сложное, недоступное для понимания нормальному человеку. Это не так, друзья мои, убедитесь сами! Перед вами учебник, в котором максимально доступным языком и буквально на нескольких страничках изложена суть важнейших разделов этой области знаний. Любознательный читатель найдет здесь много полезного. Надеюсь, учебник вам покажется интересным и в трудную минуту поможет блеснуть своими знаниями в компании друзей!

Строение вещества

Все окружающие нас предметы, а также и живые существа состоят из маленьких частиц, обычно - молекул. Молекулы же, в свою очередь, состоят из атомов. В составе молекулы может быть много атомов, пример тому - обыкновенный спирт. Молекула может состоять также из небольшого количества атомов, бывает, даже из одного атома! Люди в таких случаях обычно говорят, что предмет просто состоит из атомов. Медная проволока, например, состоит из молекул, каждая из которых имеет в своем составе единственный атом. Можно сказать, что медная проволока просто состоит из атомов меди!

Устройство атомов

Атомы, в свою очередь, тоже состоят из частиц. В середине каждого атома находится ядро, состоящее из двух видов частиц - протонов и нейтронов. Бывают ядра, в которых совсем нет нейтронов (пример тому - ядро атома водорода), но это у нас случается редко. Протоны и нейтроны имеют очень маленькую массу, приблизительно равную массе атома водорода. Каждый протон заряжен положительно, и величина его заряда равна +1. А вот нейтрон - тот ни капельки не заряжен, то есть заряд его просто равен нулю! Если посмотреть на ядро в сборе, то оно в целом окажется заряженным положительно, а заряд его будет равен числу содержащихся в ядре протонов. Чтобы уравновесить положительный заряд ядра, необходимо окружить его в атоме отрицательно заряженными частицами, называемыми электронами. Заряд одного электрона равен -1, то есть для нейтрализации положительного заряда необходимо расположить столько же электронов, сколько протонов содержится в атомном ядре. Масса каждого электрона в тысячи раз меньше массы протона (или нейтрона), поэтому любой атом весит примерно столько же, сколько весит его ядро. Протон, нейтрон, электрон, а также и всякие другие трудноделимые частицы настоящие специалисты в ядерном деле часто называют элементарными частицами.

Состояние атомa

Если атом не трогать, то он будет жить своей жизнью в так называемом "основном" состоянии, в котором электроны располагаются вокруг ядра в строго определенных местах в соответствии с известными им законами. Если на атом оказать воздействие, хорошенько нагрев предмет или поместив в сильное электромагнитное поле, то некоторые электроны просто не смогут удержаться на своих местах и начнут от избытка энергии перемещаться на большее от ядра расстояние. Такое состояние атома называют "возбужденным". Бывает, однако, что через некоторое время часть электронов возвращается на свои законные позиции, при этом тот самый избыток энергии выхлестывается наружу, вызывая яркое свечение. Именно таким образом возникает свечение электрической лампочки, когда под действием электрического тока многочисленные атомы вольфрама дружно переходят то в возбужденное состояние, то обратно. Если еще более усилить воздействие на атом, то часть электронов может совсем улететь, при этом атом в целом приобретет положительный заряд. Такое состояние атома называют "ионизированное", а сам атом называют "ионом". На явлении улетания электронов основано устройство кинескопа Вашего телевизора. Из нагретой нити вылетают отрицательно заряженные электроны, которые тут же устремляются к положительно заряженному экрану телевизора, вызывая его свечение. Если хорошо постараться, то можно заставить улететь из атома абсолютно все электроны! Атом в таком состоянии уже никак не называется, потому что это теперь не атом, а обыкновенное ядро. В совсем уж экстремально жарких условиях, например, внутри Солнца, материя как раз состоит из таких вот ядер!

Явление радиоактивности

Ядра в различных атомах могут быть стабильными и нестабильными. В первом случае с атомами ничего интересного не происходит. Во втором случае, наоборот, происходит распад ядра. Явление, когда ядра сами по себе распадаются, называется радиоактивностью. Распад ядер обычно сопровождается вылетанием наружу ряда частиц. Чаще всего вылетают положительно заряженные альфа-частицы (это ядра гелия, состоящие из двух протонов и двух нейтронов) и отрицательно заряженные бета-частицы (это - попросту электроны). Радиоактивный распад часто сопровождается гамма-излучением, это что-то наподобие радиоволн. При распаде некоторых атомов бывают случаи, когда происходит вылетание и других частиц, скажем, нейтронов. В некоторых случаях вылетает и самая маленькая из известных частиц (до сих пор неизвестно, есть у этой частицы вообще хоть какая-нибудь масса!) - нейтрино. О нейтрино мы еще обязательно с вами поговорим во время изучения устройства Солнца. Также встречаются атомы, распад которых сопровождается не гамма-излучением, а каким-нибудь другим, например, рентгеновским. Что такое рентгеновские лучи, я думаю, вам объяснять не надо.

Радиационная безопасность

Образующиеся при радиоактивном распаде частицы и лучи очень опасны для здоровья. К счастью, эти лучи и частицы поглощаются различными материалами. Поэтому людям можно и нужно защищаться от вредных проявлений радиоактивности. Лучше всего поглощаются альфа-частицы, ведь они полностью застревают даже в обычном листе бумаги! Также совсем несложно защититься от бета-частиц. Кстати, нам повезло: альфа- и бета-частицы - самые опасные. Но поскольку они практически не проходят через кожу, бояться таких радиоактивных препаратов не надо (важно только не принимать их вовнутрь - иначе вещество быстро попадет в кровь и все закончится плохо). К сожалению, чисто альфа- и бета-излучатели встречаются крайне редко, и распад подавляющего числа радиоактивных атомов сопровождается достаточно опасным гамма-излучением, от которого защититься значительно труднее, чем от неповоротливых альфа и бета-частиц. Чем толще и тяжелее слой защитного материала, тем эффективнее получится наша защита от проникающей радиации. От мощного гамма-излучения вполне удается защититься многометровыми слоями бетона. Неплохо также для изготовления защиты использовать материалы из свинца и вольфрама. Но и тут не все так гладко. Например, чрезвычайно опасные частицы - нейтроны - как раз довольно легко проходят через свинец и вольфрам, но зато они неплохо застревают в полиэтилене и даже в обыкновенной воде! Самые проникающие частицы (к счастью, неопасные) - это нейтрино. Эти частицы проходят через любые материалы, совершенно в них не поглощаясь. Они умудряются беспрепятственно пролететь даже сквозь земной шар!

Ускорительная физика

Элементарные частицы чудным образом появляются не только при радиоактивном распаде. Как мы с Вами уже знаем, если поместить совершенно стабильные атомы в какие-либо страшные условия (сильное магнитное поле, высокая температура и т.п.), то все электроны быстро улетят и мы получим голые заряженные ядра. Эти ядра можно затем разогнать до высоких скоростей и энергий в электромагнитном поле. Обычно любят разгонять ядра атомов водорода - эти ядра самые легкие, потому что каждое состоит всего лишь из одного протона. Пучок разогнанных частиц, направленный на какой-нибудь материал - "мишень", выбьет из этой мишени другие интересные частицы, которые можно изучать и направлять на другие мишени. Для разгона частиц существуют специальные устройства - ускорители. Бывают линейные ускорители, где частицы разгоняют вдоль прямой линии, и кольцевые ускорители, "циклотроны", в которых частицы ускоряются, весело летая по кругу. Использование ускорителей позволяет изучать свойства элементарных частиц и излучений в самых разных условиях. Подвергая определенные мишени бомбардировкам этими частицами, можно получить атомы других элементов, в том числе - и доселе неизвестных. Именно таким способом получают в научном центре в Дубне новые элементы Периодической системы Д.И.Менделеева!

Реакторная физика

Существуют атомы, ядра которых при распаде помимо других частиц выделяют нейтроны. К таким атомам относятся, например, некоторые разновидности урана и плутония. В природном уране этих атомов немного, но уран-то можно "обогатить", отделив и отбросив все ненужные атомы. В результате полученный образец урана будет излучать очень интенсивный поток нейтронов. Чем больше возьмем мы такого урана и чем более плотно его упакуем, тем больше будет у нас интенсивность нейтронного потока. При достаточно большой интенсивности выделяющихся нейтронов уже хватит на то, чтобы начать выбивать дополнительные нейтроны из соседних атомов урана. Те, в свою очередь, также будут выбивать еще больше нейтронов из соседних к ним атомов. Пойдет так называемая "цепная реакция". Нейтронов будет становиться все больше и больше, и, в конце концов, дело кончится плохо - весь уран разрушится с образованием большого разнообразия других радиоактивных атомов. Что интересно, при этом выделится огромная энергия. Явление, только что рассмотренное нами, называется "ядерным взрывом", а устройство, которое сжимает образец обогащенного урана до требуемой плотности, называется "атомной бомбой". Люди сконструировали приспособление, которое при необходимости вводит в зону с большим потоком нейтронов специальные материалы, эти нейтроны поглощающие. Регулируя степень вдвигания этих материалов, можно управлять скоростью цепной реакции, заставляя энергию выделяться постепенно. Такое устройство специалисты называют "ядерный реактор". Выделяющееся тепло подобных реакторов можно использовать для получения электроэнергии (такая электростанция называется атомной), а интенсивный поток нейтронов - для проведения всевозможных ядерных исследований.