Смекни!
smekni.com

Приклади рішення задач з економетрії (стр. 5 из 5)

Проверка независимости значений

Для того чтобы доказать, что значение уровней остатков модели являются независимыми величинами (т.е. доказать отсутствие автокорреляции) можно используя широко известную статистику Дарбина-Уотсона (d), которая определяется следующим образом:

(3.40)

Расчетное значение d сравнивается с табличными значениями dН и dВ критерия Дарбина-Уотсона, определенными при фиксированном уровне значимости a (обычно принимается a=0,05) и зависящим от числа наблюдений n. Это предполагает наличие трех возможностей:

1. d>dB. Принимается гипотеза об отсутствии автокорреляции, значения остатков можно считать независимыми.

2. d<dН. Подтверждается наличие положительной автокорреляции, модель считается неадекватной.

3. dН £ d£ dB. Нет достаточных оснований для того, чтобы отклонить или принять гипотезу об отсутствии автокорреляции. Требуются дополнительные исследования.

Если проверка перечисленных выше четырех условий дает положительный результат, то простая регрессионная модель считается адекватной. Для адекватной модели ставится следующая задача – проверка точности модели.

Одной из наиболее эффективных оценок точности модели, мерой качества уравнения регрессии и характеристикой прогностической силы анализируемой регрессионной модели является коэффициент детерминации R2.

Коэффициентом детерминации называется величина

, (3.41)

Величина R2 показывает какая часть вариации регрессанта может быть объяснена вариацией выбранного регрессора и характеризует качество подгонки регрессионной модели к наблюдаемым значениям y. В следующей главе будет показано, что

Если
, то это означает точную подгонку, между переменными существует линейная связь, все
. Если
то говорят, что функция регрессии не объясняет ничего. Если
, то регрессионное уравнение оценено тем лучше, чем больше при прочих равных условиях R2.

В случае однофакторной линейной регрессии коэффициент детерминации равен квадрату коэффициента корреляции:

R2 = r2 (3.42)

3.5. Прогнозирование по моделям простой регрессии.

Предположим, что нами построена регрессионная модель, доказана ее адекватность и определена точность. Теперь на базе этой модели можно строить различные прогнозы.

Существуют две формы прогнозирования:

· интерполяционное (применяют для определения среднего значения объясняемой переменной у при значениях х, расположенных "внутри" ряда эмпирических данных, т.е. между значениями объясняющей переменной, полученным в результате сбора информации);

· экстраполяционное (позволяющее определить значения признака за пределами исследуемого ряда эмпирических значений).

Интерполяционное прогнозирование как правило, не составляет труда. Прогнозные значения получают непосредственной подстановкой интересующего нас значения регрессора в построенную модель.

При экстраполяционном прогнозировании делается предположение о сохранении выявленных взаимосвязей факторов и на значения переменных, находящиеся за пределами исследуемого интервала аргументов. Особенно это важно при анализе временных данных. Обычно экстраполяция распространяется на период не превышающий одной трети количества наблюдений.

В процессе прогнозирования можно получить два типа прогнозов: точечный и интервальный.

Точечный прогноз дает значения зависимой переменной, например,

, для соответствующего значения
из построенной регрессионной модели:

(3.43)

При этом действительное значение регрессанта будет несколько отличаться от полученного теоретического значения. Причиной такого отклонения являются различные случайные факторы. Т.е.

(3.44)

Действительное значение

мы не можем найти, а можем лишь оценить его с помощью прогноза (3.46).

Література

1. Наконечний C.I., Терещенко Т.О., Романюк Т.П. Економетрія: Підручник.- Вид. 2-ге, доповн. та перероб. – К.: КДЕУ, 2000. – 296 с.

2. Наконечний C.I. та інші. Методичні розробки та вказівки для проведення

3. Економетрія. Методичні рекомендації до виконання контрольних робіт (для студентів економічних спеціальностей).

Укладачі: Ю.Т.Олійник, О.В.Балко – Макіївка, МЕГІ, 2001. – 22с.


[1] Эконометрика: Учебник/ Под ред. И.И.Елисеевой. – М.: Финансы и статистика. 2002. – 344 с.

[2] Экономико – математические методы и прикладные модели: Уч. пособие для вузов /В.В.Федосеев, А.Н.Гармаш, Д.М.Дайнтбегов и др.; Под ред. В.В.Федосеева. – М.: ЮНИТИ, 2000. – 391 с.