Смекни!
smekni.com

Термоядерный реактор (стр. 1 из 3)

Санкт-петербургский Государственный Морской Технический Университет


По теме: Термоядерный реактор.

Выполнил:

Студент:

Группа №

Проверил: Исаков Н.Я.

Санкт-Петербург

2000 г.

План:

1.Введение.

2.Плазма и топливный цикл термоядерного реактора.

3. Физические основы реактора-токамака.

3.1 Условия термоядерного «горения».

3.2 Нагрев плазмы.

3.3 Магнитное удержание.

3.4 Удаление продуктов реакции из плазмы.

3.5 Переход к непрерывному режиму.

4. Инженерные аспекты термоядерного реактора.

4.1 Магнитная система.

4.2 Криогенная система.

4.3 Вакуумная система.

4.4 Система энергопитания.

4.5 Бланкет реактора.

4.6 Тритиевый контур.

4.7 Защита реактора.

4.8 Системы дополнительного нагрева плазмы и подпитки ее топливом.

4.9 Система управления.

5. Термоядерные реакторы-токамаки и их характеристики.

6. Термоядерный синтез «завтра».

7. Вывод.

1. Введение:

Сегодня человечество удовлетворяет свои потребности в энергии, главным образом сжигая нефть, газ и уголь. Однако запасы нефти и газа ограничены: с учётом роста потребления энергии они могут быть в значительной мере исчерпаны за какие-нибудь 30-50 лет. Кроме того, нефть и газ – это не только топливо, но и ценное сырьё для получения ряда химических продуктов, производства белка и других важных веществ.

Как же развиваться энергетике? Путь оптимального её развития был намечен нашей страной, построившей более 40 лет назад первую АЭС. Именно ускоренное развитие атомной энергетики и является перспективой на будущее.

АЭС сегодняшнего дня используют реакцию деления тяжёлых ядер. Но имеются ещё огромные потенциальные резервы развития в лёгких ядрах, которые могут быть реализованы в реакциях синтеза. Водородная бомба – это демонстрация возможности освобождения такой энергии в форме взрыва чудовищной силы. Но в скором времени физики осуществят управляемый термоядерный синтез (УТС).

Не исключено, что необходимые темпы роста производства энергии в перспективе будет трудно поддерживать, даже «сжигая» во все больших масштабах дешёвый уран и вырабатываемый в реакторах на быстрых нейтронах плутоний. Кроме того, с развитием ядерной энергетики придётся иметь дело с большими массами радиоактивных отходов и ужесточения требования к радиационной безопасности. Сегодня неясно, как это скажется на экономике ядерной энергетики. УТС же, использующий в качестве на начальном этапе дейтерий и литий, а затем только дейтерий. Может стать поистине не иссекаемым источником энергии, позволяющим резко снизить радиационную опасность.

Последние 40 лет работы по УТС ведутся широким фронтом в различных направлениях. В итоге одним из наиболее перспективных путей решения этой проблемы признана разработка систем с магнитным удержанием плазмы, среди которых токамаки занимают передовые позиции.

Термин «токамак» был предложен И.Н. Головиным и Н.Я. Явлинским, которые, начав в 50-х годах исследования по управляемым термоядерным реакциям, избрали для этой цели вакуумную камеру в форме бублика и внутри её с помощью мощного газового разряда создали нагретый до очень большой температуры газ – высокотемпературную плазму. Для стабилизации плазмы использовалось сильное продольное магнитное поле. От первых слогов названий основных компонентов установки – ТОроидальная КАмера с МАГнитным полем – и было образованно слово «токамак» (при этом звонкая согласная Г была заменена на глухую К)


2. Плазма и топливный цикл термоядерного реактора:

Цель УТС – обеспечить протекание реакции слияния лёгких ядер. Наибольший интерес с этой точки зрения представляют реакции с участием изотопов водорода; дейтерия и трития (DT-цикл) либо одного дейтерия (DD-цикл).

В первом случае рождаются a-частица с энергией 3,5МэВ и нейтрон с энергией 14,1МэВ

Во втором – с равной вероятностью образуется ядро

и нейтрон или тритон (ядро трития) и протон.

Выделяющаяся в различных реакциях синтеза энергия изменяется в несколько раз, тогда как их сечения, или вероятности (зависящие от энергии взаимодействующих частиц), различаются более существенно. Так, максимальное сечение DT-реакции превышает соответствующую величину для DD-реакции более чем в 50 раз.

Кроме того, энергия сталкивающихся частиц (температура плазмы), при которой достигается этот максимум, для первой реакции примерно в 10 раз ниже, чем для второй. С этой точки зрения DT-реакция более предпочтительна и реализуется легче (при меньших значениях температуры и плотности плазмы), так что в настоящее время концепция УТС исходит из использования DT-смеси.

Однако третий – нестабильный (отсутствующий в природных условиях) и весьма дорогой элемент. Его необходимо воспроизводить в самом реакторе. Поэтому в дальнейшем, после отработки необходимых систем, единственным топливом для реактора станет неизмеримо более дешёвый и доступный дейтерий.

Интенсивность ядерной реакции, т.е. число актов взаимодействия в единице объёма за единичный промежуток времени, сильно зависит от энергии сталкивающихся ядер. Поэтому для осуществления УТС требуется нагреть DT-смесь до очень высокой температуры, порядка 100 млн. градусов. Любое вещество при таких температурах представляет собой плазму. Однако даже столь огромная сама по себе не гарантирует успеха, ибо интенсивность термоядерного синтеза определяется не только температурой плазмы, но и её плотностью. Так, для наиболее вероятной DT-реакции плотность плазмы в термоядерном реакторе при указанной температуре должна быть не менее

см
.

Поскольку тритий не встречается в природе, его следует воспроизводить в процессе работы реактора. Для этого предусмотрена специальная оболочка, окружающая рабочую камеру и называемая бланкетом термоядерного реактора. Бланкет изготавливают из материала содержащего литий, т.к. тритий образуется в реакции

®
. Сгорающий при синтезе тритий пополняется в литиевом бланкете, так что реактор работает, по существу на дейтерии и литии. Запасы этих элементов на нашей планете настолько велики, что при прогнозируемых темпах потребления их должно хватить на многие сотни лет.

Теплотворная способность термоядерного топлива во много раз выше, чем не только у обычного, но и у ядерного топлива АЭС. Действительно, при синтезе 1 г. DT-смеси выделяется примерно в 20 млн. раз больше энергии, чем при сгорании 1 г. угля, и в 8 раз больше, чем при полном делении 1 г. урана.

По составу бланкета термоядерные реакторы делятся на «чистые» и гибридные. В бланкете чистого реактора воспроизводится лишь тритий. В гибридном же реакторе Бланкет наряду с литием содержит исходные материалы для получения делящихся нуклидов -

или
. Образующиеся при их облучении нейтронами
или
служат топливом для реакторов деления.

В обоих случаях тепловая энергия, выделяющаяся в бланкете, идет на нагрев теплоносителя и преобразуется в электрическую точно так же, как на АЭС. В чистом термоядерном реакторе единственная полезная «продукция» - это электроэнергия, а в гибридном реакторе к ней добавляются делящиеся нуклиды.

3. Физические основы реактора-токамака:

3.1 Условия термоядерного «горения».

В наиболее «горючей» смеси, содержащей равные количества дейтерия и трития, термоядерное пламя «вспыхивает» при температуре свыше 50 млн. градусов. Нагрев плазмы до такой температуры представляет собой хотя и трудную, но вполне разрешимую задачу: ведь плотность плазмы в реакторе примерно в 100 тыс. раз меньше плотности газа при атмосферном давлении.

Для интенсивного протекания реакции синтеза в токамаке нужно, чтобы плазма занимала достаточно большой объём. Лишь в этом случае частицы и излучения не успеют выйти из плазмы раньше, чем произойдёт необходимое для поддержания управляемой реакции число единичных актов синтеза. Математически это можно выразить следующим образом: произведение плотности плазмы n на характерное время

удержания энергии в плазме должно превосходить некоторое критическое значение (зависящее от температуры). Для DT-цикла n
см
. Это соотношение называют условием зажигания термоядерной реакции. Как указывалось выше, в термоядерном реакторе плотность DT-плазмы должна превышать
, поэтому
составляет примерно 1 с. Величина
характеризует скорость отвода энергии от плазмы к стенкам реактора.