Смекни!
smekni.com

Статистическая механика классических систем (стр. 1 из 3)

Лекция. Статистическая механика классических систем.

План:

1. Критерий применимости классического приближения. Каноническое распределение и статистические интегралы.

2. Распределения Максвелла и Максвелла – Больцмана для идеального классического газа.

3. Статистический интеграл для идеального классического газа.

1.Перейдем к анализу применения построенного канонического и большого канонического формализма, который начнем с исследования классических систем. Заметим, что первоначально аппарат статистической механики разрабатывался именно применительно к классическим системам, т.е. к системам большого числа частиц, микроскопическое описание которых основывалось на аппарате классической механики.

Вообще говоря, универсального критерия применимости классического приближения не существует, а они формируются применительно к каждому отдельному виду микроскопического движения. В качестве примера рассмотрим трансляционное движение. Такой тип наиболее применим к моделям идеальных одноатомных газов, для которых рассматривается именно поступательное движение.

Пусть состояние термодинамической системы на микроскопическом уровне задано волновой функцией

. Тогда распределение плотности в координатном пространстве
в общем случае оказывается непрерывным, в то время как в представлении классической механики, соответствующем набору N материальных точек в объеме V, распределение плотности дискретно. Тогда, переход к классическому описанию соответствует случаю, при котором непрерывное (размазанное) распределение
распадается на волновые накаты или сгустки, которые можно рассматривать как квантовый аналог классических частиц.

Условием такого “разрушения” непрерывной структуры на дискретную является требование

. (8.1)

Здесь

- длина волны де-Бройля,
- характерные длины в рассматриваемом случае.

В качестве величины

можно выбрать либо линейный размер системы L, тогда (8.1) заменяется естественным требованием:

, (8.2а)

классического движения частицы в потенциальном ящике , которое выполняется автоматически в предельном случае

.

Более жесткое условие классичности термодинамической системы формулируется в случае, когда в качестве величины

выбирается расстояние
между частицами. В этом случае условие (8.1) принимает вид:

, (8.2б)

которое физически интерпретируется как условие распадения системы на пекеты, размеры которых меньше расстояния между ними.

Заметим, что вследствие движения частиц критерий (8.2б) выполняется не всегда. В частности, этот критерий нарушается при “столкновении” частиц. Поэтому потребуем вычисления условия (8.2б) в среднем:

(8.3)

Заметим, что условие (8.3) рассматривается как предельный случай, когда сближение волновых функций пекетов на расстояния

, при которых становятся существенными квантовые корреляционные эффекты, считаются сравнительно редкими.

Используя классические распределения Максвелла, известное из общего курса физики (его строгое доказательство на основе распределений Гиббса будет получено целое), получаем:

.

Заменяя

на единицу, и подставляя результат в (8.3), получаем:

. (8.4)

Записывая условие (8.4) относительно температуры, получаем:

(8.5)

Условие (8.5), являющееся условием классичности системы N материальных точек, называют условием статистической невырожденности Nтел по отношению к поступательному (трансцендентному) движению.

В случае иных типов движения (колебания системы в целом, колебания атомов в молекулах, вращательные движения, электронные переходы и т.д.) формулируются другие условия пластичности, не связанные с числом частиц в системе. Физический смысл этих условий по сравнению с рассмотренными случаями не изменяется, а их конкретный вид получается исходя из решения соответствующей квантовомеханической задачи нескольких тел. (В рассмотренном примере мы использовали решение задачи о системе свободных частиц).

Рассмотрим как изменяется рассмотренные выше параметры микроскопического описания термодинамических систем пи переходе от квантового описания к классическому. В этом случае микроскопическое описание осуществляется не с помощью волновой функции, а при помощи точки в фазовом пространстве:

.

Соответственно, значения динамических переменных также характеризуются классическими параметрами

Однако остается открытым вопрос о переходе от статистической суммы, по микроскопическим состояниям n к интегралу по фазовому пространству. Для этого необходимо задать число квантовых состояний, приходящихся на элемент фазового пространства

. Согласно квазиклассическому приближению квантовой механики оно равно:

(8.6)

Здесь

- число внутренних, не подверженных классическому переходу степеней свободы i-ой частицы. Так, если частица имеет спин, каждое ее состояние характеризуется ориентацией спина, например, по отношению к импульсу
. Число таких ориентаций оказывается равным:

(8.7)

Здесь

- максимально возможная величина проекции собственного момента частицы на некоторую ось. Так, для электрона (
) величина
оказывается равной 2 и т.д. Исключение составляют фотоны, для которых
, хотя их спин
.

Подставляя (8.7) в (8.6) получаем выражение для числа

квантовых состояний в элементе фазового пространства.

Тогда статистическая сумма

по микроскопическим состояниям n в квазиклассическом пределе можно записать в виде интеграла по фазовому пространству (p,q):

(8.8)

Здесь

- гамильтониан системы, а величина
с учетом тождественности частиц имеет вид:

(8.9)

Сомножитель

также введен в силу принципа тождественности. Дело в том, что перестановка любых двух частиц в классическом случае характеризует различные состояния. В то же время, перестановка двух частиц с точки зрения квантовой теории характеризует одно и тоже состояние. Это связано с принципиальной неразличимостью (тождественностью) одинаковых частиц. По этой причине в (8.8) и вводится множитель, обратный числу перестановок.

Каноническое распределение в классическом процессе записывается как вероятность обнаружить микроскопическое состояние классической системы, расположенное в бесконечно малом 6N-мерном объеме

около точки (p,q):

Свободная энергия F, как и ранее, определяется из соотношения:

Далее рассмотрим как изменяется большое каноническое распределение. Вначале рассмотрим переход к классическому случаю выражение большой канонической суммы

. Здесь сохраняется суммирование по числу частиц: