Смекни!
smekni.com

Сжижение газов 2 (стр. 8 из 8)

Но при переходе через λ-точку теплопроводность жидкого гелия внезапно возрастает приблизительно в 5·106 раз, так что теплопроводность жидкого гелия оказывается в сотни раз больше, чем у лучших металлических проводников тепла. Жидкий Не ІІ, следовательно, не только сверхтекуч, но и «сверхтеплопроводен».

Однако легко видеть, что наблюдаемая теплопроводность вовсе не является теплопроводностью в обычном смысле этого слова и что перенос тепла в жидком Не ІІ осуществляется более сложным, чем теплопроводность, механизмом. В самом деле, для переноса тепла необходима, как мы знаем, разность температур. Но в жидком Не ІІ при наличии разности температур возникает поток сверхтекучей компоненты, направленный против потока тепла (термомеханический эффект). Передача тепла в жидком Не ІІ поэтому непременно сопровождается переносом массы жидкости, чего при обычной теплопроводности, конечно, не происходит. Значит, передача в жидком гелии осуществляется не столько теплопроводностью, сколько своеобразной конвекцией особыми потоками жидкости.

Существование таких потоков при переносе тепла было очень наглядно показано в опытах П. Л. Капицы (1941 г.). один из таких опытов схематически показан на рис15.

Небольшой стеклянный сосуд с впаянными нагревателем и термометром заканчивается в нижней своей части тонкой трубкой. Сосуд помещается в сосуд Дьюара с жидким гелием, а напротив конца трубки помещается легкое крылышко на тонком подвесе. На нити подвеса укреплено зеркальце, позволяющее наблюдать за закручиванием нити.

При пропускании тока через нагреватель и нагреве жидкости наблюдается поворот крылышка вместе с нитью подвеса. Это означает, что оно испытывает действие силы, которая может исходить только от струи жидкости, выходящей из трубки. Струя эта состоит, рис. 15

очевидно, из нормальной компоненты жидкого

Не ІІ, так как сверхтекучая компонента, неспособная изменять свой импульс, не может вызывать и силу.

Выходящая из сосуда струя нормальной компоненты должна, конечно, компенсироваться обратной струей компоненты (протекающей, по-видимому, в пристенном слое трубки). Но эта струя, направленная в сторону источника тепла, на крылышко не действует и непосредственно не обнаруживается.

Таким образом, перенос тепла в жидком Не ІІ связан со сложными движениями в жидкости, и именно они обеспечивают необычайно высокую кажущуюся теплопроводность жидкого Не ІІ. Этими движениями, по-видимому, объясняется и прекращение видимого кипения жидкого гелия при переходе через λ-точку.

Естественно, что характер потоков жидкости, а значит и теплопередача в жидком Не ІІ должны зависеть от толщины капилляров, так как в очень тонких трубках возможно течение только сверхтекучей компоненты. Теплопередача должна зависеть также от скорости потоков, так как при скорости выше критической течение перестает быть безвязкостным даже для сверхтекучей компоненты.

Заключение

Низкие температуры очень важны в нашей жизни. Окружающий нас космос – это природный гигантский холодильник, не дающий нам сгореть от палящих лучей солнца. Но и созданный человеком рукотворный холод нашел не мало применений: это и получение кислорода для современной металлургии, и громадные сверхпроводящие магниты, предназначенные приблизить осуществление управляемого термоядерного синтеза, и целая отрасль медицины – криохирургия, и наиболее чувствительные приборы для обнаружения радиосигналов и измерения магнитных полей, это в перспективе создание машин нового поколения и многое, многое другое.

В результате изучения материалов по рассматриваемому вопросу, были сделаны следующие основные выводы:

1. Вещества при изменении температуры меняют свои свойства. При понижении температуры большинство веществ меняют фазовое состояние. При самых низких температурах только два вещества – водород и гелий – могут находиться в газообразном состоянии с заметным давлением, все прочие газы при значительно более высоких температурах твердеют, а упругости их паров становятся ничтожно малыми.

2. Получение низких температур, от 200 К и ниже, имеет огромное значение для лабораторных исследований свойств веществ и для некоторых промышленных целей.Основными методами получения очень низких температур является магнитный способ и метод с применением жидкого гелия.

3. У всех веществ есть особая точка называемая тройной. В ней граничат сразу 3 фазы: твердая, жидкая и газообразная, и их все три можно наблюдать одновременно. Как выяснил в своих исследованиях Камерлинг-Оннес, у гелия нет тройной точки. Это единственное вещество, обладающее таким свойством.

4. Капица, измеряя вязкость методом перетекания, выяснил, что вязкость гелия II чрезвычайно мала. Он назвал обнаруженное явление сверхтекучестью. Сверхтекучесть – чисто квантовое явление, а жидкий гелий является единственной квантовой жидкостью, в то время как другие жидкости отвердевают при значительно более высоких температурах, при которых описываемый квантовый эффект еще не проявляется.

Список литературы

1. В.С. Эдельман. Вблизи абсолютного нуля. Москва, 1983г.

2. А.К. Кикоин, И.К. Кикоин. Молекулярная физика. Москва, 1976 г.

3. Д.В. Сивухин. Термодинамика и молекулярная физика. Москва, 1990 г

4. И.В. Савельев. т.1. Механика. Молекулярная физика. М.: Наука. Гл. ред. физ.-мат. лит., 1989Г.