Смекни!
smekni.com

Переход горения в детонацию в движущейся водородо-воздушной смеси (стр. 2 из 4)

Для многих смесей найдены критические энергии инициирования детонации в одномерной, двумерной и трехмерной постановках [12]. Получены выражения для величины критической энергии инициирования детонации [3,4].

Слабое инициирование, ускорение пламени.

Механизм возникновения детонации при таком инициировании в неподвижном газе описан в [13]. При поджигании горючей смеси возникает фронт нормального горения, движущийся с дозвуковой скоростью относительно газа впереди него. Расширяющиеся (ускоряющиеся) продукты горения порождают волны сжатия и вызывают движение в газе перед фронтом пламени. Волны сжатия догоняют друг друга, образуя ударные волны. Состояние газа перед фронтом пламени изменяется: повышаются температура, давление, скорость газа, возникает турбулентность, происходит искривление фронта горения и увеличение площади его поверхности, приводящее к возрастанию скорости нормального горения. Сложное взаимодействие многочисленных волн в образовавшемся турбулентном потоке приводит в некоторый момент времени к возникновению детонации. Детонация почти всегда возникает непосредственно перед фронтом ускоряющегося пламени [6]. Одновременно от точки, где произошел переход в детонацию, в обратном направлении начинает распространяться волна, называемая ретонационной волной. Эта волна дожигает смесь. Наиболее ярко это проявляется при движении в трубах, где существенно влияние стенок.

В неограниченном объеме также может происходить ускорение пламени. Экспериментальные и теоретические исследования [11,13,14] показывают, что возможны случаи, когда ускорение пламени заканчивается стабилизацией скорости горения на дозвуковом уровне, и когда ускорение пламени приводит к скачкообразному переходу горения в детонацию.

Работа [15] посвящена явлению самовоспламенения смеси за ударной волной – идея «взрыва во взрыве». Механизм градиентного ускорения пламени рассматривается в работе [16]. Исследовано также влияние возбуждения электронного состояния молекул кислорода с помощью электрического разряда на переход от дефлаграции к детонации. Во всех этих работах начальная скорость горючей смеси принималась равной нулю.

Сокращение преддетонационного расстояния может быть достигнуто повышением вкладываемой в инициатор энергии. В предельном случае, когда энергия превышает критическую энергию инициирования детонации, преддетонационное расстояние равно нулю. Выделяемая инициатором энергия определяет скорость ударной волны, движущейся по детонационноспособному газу. В работе [3,4] показано, что в покоящихся средах существует предельная скорость такой ударной волны, которая разделяет формирование детонации на два сценария: дальнейшее ускорение до возникновения детонационной волны и ослабление с последующим ускорением до возникновения детонационной волны. Также преддетонационное расстояние может быть сокращено посредством внесения диафрагмы. В данной работе получены результаты исследования этой ситуации.

Исследование формирования детонации в потоках.

Исследования формирования детонации в потоках горючей смеси проводились в Отделе №2 ИТЭС ОИВТ РАН [20-23]. Влияние турбулентности потока смеси на переход горения в детонацию было исследовано в CH4+O2+N2 смесях в ДКС длиной 7 м и диаметром 36 мм. Использовались метано-воздушные смеси в различной степени α обогащенные кислородом,

, где
- расход кислорода,
- расход азота. Скорость процесса определялась как средняя величина на определенной базе.

Получены зависимости концентрационных пределов детонации в CH4-O2-N2 смесях от числа Рейнольдса. Следует отметить, что границы существования детонации, т.е. концентрационные пределы, следует понимать условно, а именно при большей длине ДКС они могут расширяться.

Влияние диафрагм и препятствий на формирование детонации.

Численные исследования были проведены в Московском Государственном Университете [19]. На рис.5. представлены поля плотности, и скорости в последовательные промежутки времени в 6 и 7 турбулизирующих камерах. Видно, что в каждой камере после первой горение проходит одни и те же стадии: выход пламени из трубы, расширение и замедление в камере, выталкивание в следующую трубу с продолжением горения в камере.

Рис.5. Поля плотностей в 6-й – 7-й камерах. Отношение площадей камеры и трубы 25, объемная концентрация топлива 0.012. [19]

2. Цели.

Формирование детонации в потоке водородно-воздушной смеси при слабом инициировании.

Исследование воздействия преграды на переход горения в детонацию.

3. Экспериментальная установка.

Работы по исследованию ПГД производились на следующей установке, общий вид которой представлен на рис.6.


Рис.6. Внешний вид экспериментального стенда

ДКС – детонационная камера сгорания, ДЕ – демпферная емкость, ИБ – инжекторный блок, ИР – искровой разрядник, БИ – блок инициирования, С1, С2 – буферные емкости, Б1, Б2 – баллоны с реагентами, ЭПК1, ЭПК2 – электро-пневмоклапаны, ВН – вакуумный насос, ФД – фотодиоды, ДД – датчики давления, ССД – система сбора данных, К1, К2, К3, К4 – краны, Р1, Р2 – редукторы, М1, М2, М3 – манометры.

Рис.7. Инжекторный блок ИБ

Такая конструкция обеспечивала раздельную подачу реагентов и смешение их непосредственно в камере сгорания ДКС. Внутренний диаметр трубы составлял 83 мм, а длина ее – 2510 мм, вместе с демпферной емкостью ДЕ, представляющей собой продолжение детонационной камеры сгорания. С помощью крепежных фланцев к ДКС крепился инжекторный блок ИБ (рис.7), способный принимать различное положение вдоль трубы относительно системы инициирования – искрового разрядника. Реагенты поступали из буферных емкостей БЕ, а подача топлива отсекалась с помощью электро-пневмоклапанов ЭПК, время срабатывания которых составляло две

миллисекунды (рис.8). В процессе инжекции давление в буферных емкостях практически не менялось. Для этой цели объем буферных емкостей был увеличен примерно в 8 раз и составил 40 л. Так как подвижность водорода выше, чем воздуха, из-за его малого молярного веса, то для синхронного заполнения рабочей камеры компонентами детонационноспособной смеси необходимо было несколько задерживать поступление водорода относительно воздуха. Время такой задержки на открытие ЭПК легко может быть определено. Для этой цели стоит рассмотреть открытие клапанов как разрыв диафрагмы. Дальнейшее течение газа по подводящим трубкам стоит рассмотреть как движение газа за фронтом ударной волны. Для введения времени задержки используется линия временной задержки, позволяющая сдвинуть фазу сигнала на открытие водородного ЭПК относительно открытия воздушного ЭПК на 4 мс. Время открытия клапанов регулируется с помощью блока задержки.

Поджиг горючей смеси производился с помощью искрового разряда, создаваемого искровым разрядником ИР (рис.9). ИР располагался на расстоянии 150 мм от инжекторного блока. Разряд на ИР происходил через определенное время после подачи реагентов в камеру сгорания. Это время составляло от 20 до 90 мс и регулировалось с помощью задержки, так же, как и сигнал, задерживающий подачу водорода относительно подачи воздуха.

Для очистки рабочей камеры использовался форвакуумный насос ВН производительностью 3 л./c. В промежутках между экспериментами камера не осушалась полностью и не прочищалась, так что работы производились в горючей смеси, содержащей некоторое постоянное количество паров воды.

Конструкция инжекторного блока со сменными инжекторами позволяла производить исследования с различными типами инжекторов.

Средствами диагностики служили пьезодатчики PCB-112B10 и PCB-113B34 , расположенные вдоль трубы на одинаковом расстоянии друг от друга (четыре сечения). В одном сечении с ними располагались фотодиоды ФД. ДД и ФД позволяли определить время прихода ударной волны и фронта пламени с погрешностью меньшей одной мкс. Сигналы записывались на два четырехлучевых цифровых запоминающих осциллографа Tektronix 3014B (частота канала – 100 МГц), образуя, таким образом, систему сбора данных ССД. Заключение по поводу фиксирования датчиками детонационной волны делалось на том основании, что фронт пламени регистрировался фотодатчиком одновременно с ударной волной, регистрируемой пьезодатчиком (в пределах разрешающей способности измерительных приборов).

4. Определение расхода реагентов.

В работе использовались в качестве инжекторов сверхзвуковые сопла. Для них была проведена серия тарировочных экспериментов, представляющие собой выяснение зависимости давления смеси и расхода в трубе от времени инжекции и давления в буферных емкостях. В ходе тарировочных работ время открытия клапанов равнялось времени инжекции при исследовании детонации.