Смекни!
smekni.com

Люминесценция, её виды (стр. 3 из 7)

Рассмотренные здесь положения, определяющие возможность возникновения люминесценции или, как более правильно ставился вопрос в начале раздела, напротив, невозможность люминесценции, конечно, не могут претендовать на полноту. Однако используя рассмотренные в этом и предыдущих разделах закономерности, химик-аналитик в состоянии хотя бы в самом первом приближении оценить люминесцентные возможности того или иного вещества, оценить ряд факторов, способствующих или, наоборот, мешающих возникновению люминесценции.

Возникновение люминесценции и холодных пламен в смесях пары топлива – воздух было впервые обнаружено Перкижым у углеводородов, эфиров и жирных кислот в интервале 200 – 250 С. Преттр подробно изучал свечение, связанное с медленным окислением парафинов, олефинов, нафтенов, спиртов, альдегидов, эфиров, и области их воспламенения.

Некоторые органические вещества не люминесцируют в растворах при комнатной температуре, но люминесцируют при их замораживании. Устранение внутренних безызлучательных переходов в данном случае зависит в основном от исключения возможности вращения отдельных частей молекулы в результате замораживания растворителя. Эффект возникновения люминесценции при понижении температуры наблюдается у не люминесцирующих при комнатной температуре трифенилметановых красителей.

Расчеты показали, что равновесное давление паров серы при прокаливании сульфида цинка в НСl, в H2S и в их смеси значительно (примерно на 2 порядка) выше, чем при прокаливании его в нейтральной среде. Это означает, в частности, что предположение об образовании в среде НСl или H2S повышенной концентрации серных вакансий, которое было положено в основу некоторых моделей центров свечения в ZnS-фосфорах (см. гл. Ясно, что не этим обусловлено особенно благоприятное действие хлористого водорода на возникновение голубой люминесценции ZnS-Cl и сероводорода – на возникновение красной люминесценции ZnS-Cu – фосфоров.

3.Классификация люминесценции

I. В зависимости от характера элементарных процессов, приводящих к люминесцентному излучению, различают:

1. Спонтанная люминесценция – состоит в том, что под воздействием источника люминесценции вначале происходит возбуждение атомов (молекул или ионов) на промежуточные возбужденные энергетические уровни – далее с этих уровней происходят излучательные, а чаще безызлучательные переходы на уровни, с которых излучается люминесцентное свечение. Такой вид люминесценции наблюдается у сложных молекул в парах и растворах, у примесных центров в твердых телах;

2. Вынужденная (метастабильная) люминесценция характерна тем, что под действием источника люминесценции происходит переход на метастабильный уровень, а затем следует переход на уровень люми-несцентного излучения. Примером является фосфоресценция органических веществ.

3. Рекомбинационная люминесценция происходит в результате воссоединения частиц, разделившихся при поглощении возбуждающей энергии. В газах может происходить рекомбинация радикалов или ионов, в результате которой возникает молекула в возбужденном состоянии. Последующий переход в основное состояние может сопровождаться люминесценцией. В твердых кристаллических телах рекомбинационная люминесценция возникает в результате появления неравновесных носителей заряда (электронов или дырок) под действием какого-либо источника энергии. Различают рекомбинационную люминесценцию при переходах «зона – зона» и люминесценцию дефектных или примесных центров (т. Н. центров люминесценции). Во всех случаях процесс люминесценции может включать захват носителей на ловушках с их последующим освобождением тепловым или оптическим путем, т. Е. включать элементарный процесс, характерный для метастабильной люминесценции. В случае люминесценции центров, рекомбинация состоит в захвате дырок на основной уровень центра и электронов на возбуждённый уровень. Излучение происходит в результате перехода центра из возбуждённого состояния в основное. Рекомбинационная люминесценция наблюдается в кристаллофосфорах и типичных полупроводниках, например германии и кремнии. Независимо от механизма элементарного процесса, ведущего к люминесценции, излучение, в конечном случае, происходит при спонтанном переходе из одного энергетического состояния в другое.

4. Резонансная флуоресценция наблюдается в парах атомов и состоит в спонтанном высвечивании с того же энергетического уровня, на котором оказался излучающий атом при поглощении энергии от источника люминесценции. При возбуждении резонансной флуоресценции светом имеет место резонансное излучение, переходящее в резонансное рассеяние при увеличении плотности паров.

С квантовой точки зрения для атомного резонанса необходимо, чтобы энергия падающего фотона совпала с энергией одного из уровней атома.

II. Время длительности люминесценции разделяют на:

1. Флуоресценция обусловлена переходами атомов, молекул или ионов из возбужденного состояния в нормальное и прекращающается сразу после окончания действия возбудителя свечения.

2. Фосфоресценция. При введении веществ в очень вязкие среды (в желатину, сахарные леденцы и т. Д.), а также при замораживании растворов возникает длительное свечение, продолжающееся доли секунды и даже целые секунды. Свечение такого вида называют замедленной флуоресценцией, или фосфоресценцией. Известны два вида замедленной флуоресценции: при одном спектр свечения совпадает со спектром флуоресценции (a-процесс), при втором наблюдается резко отличный спектр свечения, сдвинутый в сторону длинных волн (b-процесс).

Фосфоресценция обусловлена наличием метастабильных возбужденных состояний атомов и молекул, переход из которых в нормальное состояние затруднен по тем или иным причинам. Переход из метастабильного состояния в нормальное возможен лишь в результате дополнительного возбуждения, например теплового.

Разграничение на флуоресценцию и фосфоресценцию является достаточно условным. Иногда под флуоресценцией понимают спонтанную люминесценцию, а под фосфоресценцией вынужденную люминесценцию.

III. По типу возбуждения различают:

1. Ионолюминесценция – свечение при прохождении ультразвуковых волн через растворы некоторых веществ.

2. Кандолюминесценции – для неё необходим контакт пламени с люминофором, при этом он не должен сильно нагреваться.

3. Катодолюминесценция – люминесценция, возникающая при воз-буждении люминофора электронным пучком; один из видов радиолюминесценции. Первоначальное название пучка электронов — катодные лучи, отсюда термин «Катодолюминесценция». Способностью к катодолюминесценции обладают газы, молекулярные кристаллы, органические люминофоры, кристаллофосфоры, однако только кристаллофосфоры стойки к действию электронного пучка и дают достаточную яркость свечения. Именно они и применяются в качестве катодолюминофоров.

КПД катодолюминесценции обычно составляет 1—10%, основная же часть энергии электронного пучка переходит в тепло. Катодолюминесценция широко применяется в технике, особенно в вакуумной электронике. Ей обусловлено свечение экранов черно-белых и цветных телевизоров, различных осциллографов, электронно-оптических преобразователей и т.д.

4. Радиотермолюминесценция. Оказалось, что если сильно охлаж-денный образец вещества, предварительно облученный гамма-лучами, альфа-частицами или электронами, постепенно нагревать, то он начинает интенсивно светиться. Практически все вещества могут таким образом «накапливать» в себе свет и долго сохранять его. И лишь при нагреве свет как бы «оттаивает», - начинается рекомбинация «замороженных» электронов, сопровождаемая световым излучением. Цвет свечения постепенно меняется, изменяется также и его интенсивность. При этом пики интенсивности соответствуют температурам структурных переходов, что особенно заметно у различных полимеров. Даже незначительные изменения структуры вещества: повышение степени кристалличности, изменение взаимного расположения макромолекул, существенно влияют на характер свечения. РТЛ весьма чувствительна к механическим напряжениям в полимере.

Все это позволило создать на основе РТЛ простые и точные методики анализа структуры, излучения степени однородности смесей, исследования деформационных свойств и других характеристик полимеров, причем для анализа достаточно образца весом в сотые доли миллиграмма.

5. Фотолюминесценция – люминесценция, возбуждаемая светом. Простейший случай фотолюминесценции – резонансное излучение атомных паров, когда испускается электромагнитное излучение такой же частоты, какую имеет возбуждающее излучение. При фотолюминесценции молекул и других сложных систем, согласно правилу Стокса, излучение фотолюминесценции имеет меньшую частоту, чем возбуждающий свет. Это правило часто нарушается и наряду со стоксовой наблюдается антистоксовая часть спектра – излучение частоты, большей, чем частота возбуждающего света. В более сложных молекулах после поглощения света происходит перераспределение энергии между молекулами, вследствие чего спектр излучения не зависит (или слабо зависит) от возбуждающей частоты.

В результате межмолекулярных взаимодействий, а в сложных молекулах и вследствие внутримолекулярных процессов может происходить переход электронной энергии возбуждения в энергию колебательного, вращательного и поступательного движения молекул, т. Е. в тепловую энергию. Такие процессы называются тушением фотолюминесценции, они приводят к тому, что квантовый выход (отношение числа испускаемых квантов к числу возбуждающих квантов) фотолюминесценции оказывается меньше единицы.