Смекни!
smekni.com

Термометрия понятие и принципы (стр. 2 из 3)

1.3.4. Оптическая термометрия.

При наличии теплового движения молекул вещества тело всегда является источником электромагнитного излучения. Интенсивность этого излучения и его спектральный состав связаны с температурой. Для идеализированного абсолютного чёрного тела энергия, излучаемая с единицы поверхности в единицу времени определяется законом Стефана-Больцмана: Rэ=T4 ,где ,  - постоянная величина, Т – абсолютная температура. Основанные на этом законе термометры носят название радиационных пирометров (рис.5).

Измерить величину R технически очень трудно, поэтому более распространены яркостные пирометры, в которых яркость свечения исследуемого тела сравнивается с яркостью тела, температура которого известна. Схематически устройство яркостного пирометра показывает рис.6. Обычно в качестве тела сравнения берут вольфрамовую нить специальной электролампы, питаемой от стабильного источника тока. Меняя ток этой лампы можно выровнять её яркость с яркостью исследуемого тела, в этом состоянии температуры тел одинаковы. Температуру нити лампы сравнения определяют по току, при этом шкалу миллиамперметра градуируют непосредственно в градусах.

Пирометр представляет собой зрительную трубу, позволяющую рассматривать удаленные объекты. Нить лампы сравнения устанавливается в фокальной плоскости окуляра. В эту же плоскость вращением объектива проецируется изображение объектива. При правильной настройке оптической части нить лампы сравнения наблюдается на фоне объекта.

Нить лампы сравнения нельзя нагревать выше определенной температуры (14000С), поэтому для расширения предела измеряемых температур в оптическую схему пирометра включают светофильтр, ослабляющий яркость исследуемого тела с точно известной кратностью.

Яростный пирометр показывает действительную температуру лишь тогда, когда тело и нить одинаково близки по оптическим свойствам к абсолютно черному телу. Поэтому для получения истинного значения температуры в полученный результат вводят поправку, которая зависит как от материала излучающего тела, так и от его температуры. В данном случае для этого используют специальные таблицы ( см. приложение. ). Сначала по таблице 1 выбирают коэффициент излучательной способности , зависящий от материала излучающего тела. Затем по таблице 2 находят истинное значение температуры. При этом используют метод интерполяции – усреднения. Пусть, например, излучающий материал – никель, а показанная пирометром температура 15500С. Тогда по таблице 1 находим =0.36, а с помощью табл. 2 вычисляем истинную температуру как бы «организуя» недостающие строки и колонки в табл. 2. Измеренная температура лежит в интервале 1400-16000С. Из колонок 1400 и 1600 берем значения для =0.35 и 0.40 и вычисляем сколько градусов приходится на 0.01 излучательной способности. (( 1550-1530 )/(0.40-0.35))Ч0.01=40С; (( 1790-1760)/( 0.40-0.35))Ч0.01=60С

Строим дополнительный фрагмент табл.2

1400 1600
0.35 1550 1790
0.36 1546 1784
0.37 1542 1778

и т.д.

По средней строке полученной таблицы находим истинную температуру

В отдельных случаях применяют так называемый цветной пирометр, когда температуру определяют на основании закона Вина, связывающий температуру излучающего тела с длиной волны, на которую приходится максимум его излучатель ной способности. Цветной пирометр включает в себя спектральный прибор, разлагающий нагретого тела в спектр, и фотоэлектронную приставку, измеряющую распределения интенсивности в этом спектре. Оптические пирометры имеют невысокую точность, но позволяют производить дистанционные измерения, что во многих процессах металлургии, в химии, физике и астрономии очень актуально.

2. Практическая часть.

2.1.Температурные шкалы

а) Какова температура человеческого тела в шкалах Цельсия, Кельвина и Фаренгейта?

б) Сколько градусов Цельсия в одном градусе Фаренгейта?

в) Переведите 500F в градусы Кельвина.

2.2 Градуировка термометра сопротивления.

Термометр сопротивления изготовлен из тонкой медной проволоки, намотанной на бумажный каркас, помещенный в защитный стеклянный футляр ( в пробирку ). В холодном состоянии сопротивление провода близко к 80 Ом.

Сопротивления термометра в данной работе измеряется при помощи индикатора сопротивления ММВ ( рис. 7 ).

Правила пользования прибором.

- Источником питания индикатора служит батарея 3336. Питание индикатора также может осуществляться от внешнего источника с напряжением 3.8-4.4В.

- Перед началом работы установить индикатор в горизонтальное положение.

- Проверить соответствие нулевого положения указателя гальванометра и, при необходимости, установить указатель на нулевую отметку шкалы при помощи корректора К.

- Подключить термометр сопротивления к А и В.

- Поставить в соответствующее положение переключатель диапазона Д, нажать кнопку Кн. и вращать ручку перехода от тех пор, пока стрелка не становиться на нулевую отметку. Величина измеряемого сопротивления равна произведению отсчета по шкале реохорда и по рукоятке переключателя диапазона измерения.

При измерениях на средней отметке «5» шкалы реохорда основная погрешность не превышает

2%.

Для градуировки термометра сопротивления соберите установку, показанную на рис.8а. Жидкостный термометр вставляете в отверстие в крышке пробирки. Пробирку, укрепленную в лампе штатива, опустите в алюминиевый сосуд с водой. Сосуд устанавливается на электроплитку.

Включите электроплитку в сеть. Электроплитка может быть включена через ЛАТР ( лабораторный автотрансформатор ), с помощью которого можно подавать напряжения и регулировать скорость нагревания воды. По мере нагревания через каждые 100 измеряете и записываете сопротивление термометра сопротивления ( таб. 1 отчета ).

По полученным данным постройте градуировочный график термометра сопротивления, откладывая по горизонтальной оси температуру, а по вертикальной – величину сопротивления. Если экспериментальные точки имеют некоторый разброс, следует «не глаза» провести прямую. Такой градуировочный график позволяет измерять температуру среды, в которую может быть помещен термометр сопротивления.

По градуировочному графику определите температурный коэффициент сопротивления меди:

( град-1).

Значения t1и t2 и соответствующие им значения сопротивлений R1 и R2 выбираются по графику произвольно.

2.2 Градуировка термистора.

Термистор – это полупроводниковый прибор, сопротивление которого зависит от температуры. В работе используется термистор марки ММТ – 4. В холодном состоянии его сопротивление приблизительно равно 1кОм. Градуировка выполняется на установке, описанной в задании 1.

По полученным экспериментальным точкам ( таб. 2 отчета ) постройте градуировочную кривую. Следует учитывать, что зависимость сопротивления термистора от температуры имеет нелинейный характер и соединять точки следует не прямой линией, а плавной кривой.

2.3. Градуировка термометры.

В работе используется хромель-алюмелевая дифференциальная термопара. Для выполнения градуировки соберите установку, показанную на рис.8б. Обычно «холодный» спай термопары погружается в тающий лед и выполненная в этом случае градуировка является «стандартной», т.е. полученной в строго определенных условиях. Она позволяет определять температуру в градусах Цельсия, начиная с 00.В нашей работе «холодный» спай погружен в воду комнатной температуры и, строго говоря, полученная градуировка справедлива только при данной комнатной температуре.

«Горячий» спай «скрепите» с помощью прищепки с жидкостным термометром и погрузите в сосуд с водой, установленный на электроплитке. Электроплитка может быть подключена через ЛАТР(лабораторный автотрансформатор), на котором устанавливается напряжение 150-180В для более медленного нагревания .

Для измерения термо ЭДС в данной работе используется потенциометр постоянного тока ПП-63. При измерениях следует выполнять следующее:

- Перед началом работы установите корректором стрелку с гальванометром на «0».Прибор установите в горизонтальное положение.

- Соблюдая полярность подключите источник питания- аккумулятор, к клеммам «БП» (батарея питания) потенциометра.(В переносном варианте могут использоваться встроенные элементы тока).Тумблер «БП» переведите в положение «Н»- наружный.

- Тумблер «НЭ» – нормальный элемент, переведите в положение «В»- внутренний. Клеммы «БИ» и тумблер под ними в данном случае не задействованы

- Тумблер «Питание 1,2-1.65В» переведите в положение «ВКЛ».

- Подключите термопара к клеммам «Х».Переключателем введите измерительное сопротивление 0,6 Ом. Оно приблизительно равно сопротивлению хромель-алюмелевой термопары.

- Переключатель рода работ поставьте в положение «Потенц»-потенциометрические измерения.

- Штекер делителя поставьте в положение 0,5.При этом отсчитанное по прибору напряжение необходимо умножать на 0,5.

- Провести установку рабочего тока потенциометра, для чего: а) установить переключатель «К-И» в положение «К»-контроль; б)установить стрелку гальванометра на «0» вращением рукояток «Грубо» (верхняя) и «Точно» (нижняя) реостата «Рабочий ток», вначале принажатой кнопке «Грубо», а затем «Точно». (Кнопки можно зафиксировать в нажатом положении, повернув их в ту или другую стороны).\