Смекни!
smekni.com

Проблемы утилизации списанных боеприпасов (стр. 5 из 10)

Промышленное применение способа резания возможно лишь при поточной технологии подачи корпусов боеприпасов (средств взрывания) в фиксированном положении на лезвии для снятия заданного количества металла в заданном сечении для разделения бризантного и инициирующего ВВ в тонкостенных оболочках или для подготовки корпусов средств взрывания к излому.

Химическое растворение корпусов в промышленном масштабе, по-видимому, невыгодно и может быть применено для обезвреживания особо опасных изделий или их элементов, или малых количеств изделий, если недоступны другие методы.

Метод электрохимического растворения (травления) может быть экономически выгодным при переработке большого количества средств взрывания с металлическими толстостенными корпусами. Большая энергоемкость данного метода, экологическая опасность ввиду применения большого количества химически активных веществ не позволяют использовать его для вскрытия корпусов боеприпасов.

Разделка корпусов боеприпасов лазером для обеспечения доступа к снаряжению возможна при обеспечении интенсивного теплоотвода от остального материала. Этот метод может оказаться экономически выгодным и найти промышленное применение. Он позволяет безопасно, быстро и на заданную глубину вскрывать корпуса боеприпасов из любых материалов в автоматическом режиме.

Преимуществами метода резки корпуса боеприпаса лазерным лучом являются: отсутствие механического и электрического воздействия на обрабатываемый материал, возможность высокопроизводительной обработки с малым удельным тепловыделением и термодеформациями (скорость резания достигает десятки сантиметров в минуту). Лазерная резка основана на тепловом воздействии лазерного излучения на материал. Особенно эффективна резка металлов, когда в зону обработки совместно с лазерным лучом подается струя газа, способствующая удалению продуктов распада, а в некоторых случаях инициирующая химическую реакцию в месте воздействия излучения на металл. Лазерная установка мощностью лазера 1 кВт позволит резать изделия толщиной стенки до 14 мм со скоростью 0,5 м/мин.

Метод расплавления корпусов средств взрывания с последующей утилизацией снаряжения применим для пластмассовых материалов с температурой плавления до 200 °С. Необходимо учитывать, что большая часть корпусов средств взрывания изготовлена из материалов с температурой плавления 200—600 °С, поэтому этот метод не может найти широкого применения.

Разработана технология уничтожения боеприпасов взрыванием в герметичных емкостях с последующей очисткой газообразных продуктов взрыва от экологически опасных веществ и утилизации оставшихся компонентов. Такая технология уже находит практическое применение на действующих предприятиях.

Методы извлечения из боеприпасов взрывчатых веществ и составов

В некоторых случаях рассмотренные выше методы расснаряжения боеприпасов позволяют непосредственно извлечь взрывчатый элемент-наполнитель путем отделения его от вскрытого корпуса. Такая ситуация, в частности, имеет место при использовании метода гидрорезки, который особенно эффективен для авиационных бомб наружной подвески и крупногабаритных морских мин. В этом случае ВВ после извлечения, по существу, может быть использовано вторично в народном хозяйстве. В случае малогабаритных мин (противотанковых, противопехотных и т.д.) возможны простые механические способы вскрытия и освобождения оболочки (металлической, пластиковой, тканевой) с последующим механическим дроблением формованного взрывчатого состава на куски определенных размеров, пригодные для непосредственного использования на карьерах и в рудниках.

Что касается извлечения ВВ из снарядов различного калибра, в этом случае целесообразно использовать иные подходы.

Для тротилсодержащих боеприпасов наиболее разработанным методом является выплавка наполнителя с использованием внутреннего или внешнего обогрева водяным паром или специально подобранным жидким теплоносителем.

Наиболее дешевый метод — применение водяного пара для подачи внутрь боеприпаса с целью выплавки тротилсодержащего взрывчатого состава с последующей сепарацией мелкодисперсного металла (алюминия) и с использованием воды в замкнутом оборотном цикле. При этом тротил после кристаллизации может быть употреблен вторично в народном хозяйстве в качестве компонента промышленных ВВ.

Эффективно, особенно для крупногабаритных изделий, применение других жидких теплоносителей (силиконовое масло, парафин, церезин). При этом теплоноситель также участвует в замкнутом оборотном цикле, а тротил подвергается соответствующей переработке и используется в народном хозяйстве. В качестве внешнего теплоносителя может быть и водяной пар. Для этого возможно применение секционных антидетонационных ванн прямоугольного сечения с встроенными паровыми теплообменниками, которые одновременно выполняют роль антидетонационных броне" вкладышей. Секционная пятислойная конструкция и защита исключают передачу детонации при случайном взрыве 152-миллиметрового изделия (снаряда). Передача детонации между ваннами также исключается вследствие их размещения на расстоянии 100 мм друг от друга и заполнения промежутков между ними железобетоном. Применение водяных ванн с паровым обогревом и минимальным объемом воды гарантированно исключает перегрев (свыше 100 °С) при любых неполадках системы и в то же время позволяет значительно сэкономить тепло- и энергоресурсы.

При выплавке заряда в нем предварительно высверливается канал диаметром 30—45 мм. Выплавка тротила осуществляется на специальных установках пароводяной смесью при температуре воды 93—95 °С и пара 125 °С. Время выплавки в зависимости от типа боеприпаса колеблется в пределах 7—19 мин.

Имеющийся по этим методам опыт утилизации боеприпасов показывает, что существует вероятность аварийного слива тротилсодержащих жидкостей непосредственно в грунт и через него в грунтовые воды.

В этой связи с экологической точки зрения идеальным решением является использование в качестве теплоносителя непосредственно тротила или парафина. Тротил является универсальным ВВ, имеющим низкую точку плавления (80,2 °С), поддающимся всем способам снаряжения (заливка, шнекование, прессование) и в то же время — всем способам расснаряжения. Как теплоноситель он является универсальной жидкостью: взрывобезопасен, термически стабилен в жидкой и газовой фазах, имеет низкую упругость пара (1,33 • 10'4 Па при комнатной температуре). Его использование в качестве теплоносителя при расснаряжении позволит обеспечить экологическую безопасность технологии утилизации боеприпасов, исключить попадание в грунт и в окружающую атмосферу в силу комплекса его физико-химических свойств.

Обогрев боеприпаса с целью выплавки тротилсодержащих ВВ можно осуществлять и без жидкого теплоносителя путем индукционного воздействия на корпус боеприпаса. Важной особенностью такого подхода является экологическая чистота.

Преимущества метода индукционного разогрева: высокая концентрация энергии в нагреваемом материале, надежность работы, устройство регулирования и автоматизации технологических процессов, безопасные условия труда и отсутствие загрязнения окружающей среды. На установках выплавки используется низкотемпературный индукционный нагрев на промышленной частоте. Время разогрева корпуса боеприпаса составляет 3—4 мин, время выплавки ВВ — 4— 5 мин.

Описанные выше методы наиболее перспективны для извлечения из боеприпасов тротилсодержащих взрывчаты составов типа ТА-23, ТГ, ТГА и др. В то же время они непригодны для извлечения из боеприпасов гексоген- и октогенсодержащих взрывчатых составов, не содержащих тротила, а также металлизированных композиций на основе гексогена и октогена. В данном случае необходимо применение "сухих" методов извлечения ВВ. Например, вытачивание гексогенсодержащих ВВ, запрессованных в малокалиберные снаряды. Этот метод удовлетворяет требованиям взрывобезопасности, высокой производительности, гигиеничности условий работы, экологичности. Экологическая установка включает два блока: блок вытачивания разрывного заряда из штатного 30-миллиметрового снаряда с "естественным" опусканием продукта точения (под действием силы тяжести) к системе отвода и накопления порошкообразного ВВ и блок аэродинамического отбора, транспорта и накопления продукта утилизации разрывного заряда. В принципе производительность метода вытачивания по сравнению с нынешним уровнем может быть поднята в несколько раз при сохранении безопасности. При этом метод вытачивания остается наименее энергоемким по сравнению с другими методами извлечения ВВ.

Еще одним перспективным и эффективным является импульсный метод, по которому ВВ из корпуса извлекается за счет ударной волны от сосредоточенного заряда, распространяющейся через передающую рабочую среду. Действующие на изделие силовые факторы характеризуются большой интенсивностью и кратковременностью действия, измеряемой микросекундами. Импульсное воздействие возбуждает в материале разрывного заряда многократные упругие волны сжатия-растяжения. Последние приводят к диспергированию заряда внутри металлической оболочки. При этом возможность и необходимость использования относительно незначительного по величине импульсного воздействия (не превышающего предела динамической упругости материала оболочки) гарантируют безопасность процесса и сохранение свойств извлекаемого ВВ. Последнее позволяет использовать энергетический продукт по прямому назначению без дополнительной переработки.

Имеется возможность создания технологии расснаряжения взрывателей артиллерийских снарядов мелкого и среднего калибров на основе ультразвукового эффекта. Создается ультразвуковой автоматизированный комплекс, позволяющий обеспечить 100 %-ное расснаряжение боеприпасов в условиях безлюдной технологии.