Смекни!
smekni.com

Забруднення атмосферного повітря атомобільним транспортом в м. Києві (стр. 9 из 13)

У згаданих аспектах важливе значення має i аеродинаміка автомобiля. Якщо ранiше форма кузова легкових автомобiлiв визначалась, перш за все, потребами комфорту та естетики, то тепер вона диктується необхiднiстю зниження опору повiтря при русi, особливо на великих швидкостях, коли значно пiдвищується витрата палива. Вимоги аеродинамiки особливо важливi для вантажних автомобiлiв та автопоїздiв [71].

Вважають, що сумарна витрата енергiї (палива) на подолання опору пiд час руху автомобiля становить приблизно 7% всiєї енергiї, яку витрачає автотранспорт. Задача покращення аеродинамiчного стану рухомого складу полягає, насамперед, у зменшеннi лобового опору повiтря, а також у зниженнi до можливого мiнiмуму турбулентностi повiтряного потоку (завихрення).

Основними шляхами зниження опору повiтря є эменшення площi поперечного перерiзу автомобiля (проекцiї на вертикальну площину). застосування обтiчних форм iз заокругленням кутiв на кузовi, встановлення спецiальних обтiчникiв та екранiв на автопоїздах з напiвпричепами, використання вертикальних i горизонтальних панелей (дефлекторiв), що закривають щілини мiж тягачем i напiвпричепом та знижують ступiнь завихрення повiтря. Роботи, виконанi в багатьох країнах, дозволяють вважати, що зниження опору повiтря на 10% дає 4—5% економiї палива, а в цiлому покращення аеродинамiчного стану може забезпечити эменшення витрати палива до 15%.

Економiчнiсть автомобiлiв пiдвищують i iншими методами. Наприклад, для зниження опору кочення колеса використовують покришки з радiальним розмiщенням корду, встановлюють мiкро-ЕОМ для вибору оптимального режиму роботи двигуна залежно вiд умов, використовують системи вимкнення з роботи ряду цилiндрів двигуна у випадку, коли від нього не потребується великої потужностi тощо.

Першочергове значення для эменшення забруднення атмосфери машинами має технiчний стан автомобiльного й автобусного паркiв. Повнiстю справний автомобiль витрачає менше палива i вже цим сприяє зниженню рiвня забруднення повiтря. Але головна увага має бути направлена на справнiсть паливної апаратури та системи запалювання.

Вивченням i практикою експлуатацiї, наприклад, встановлено, що одна непрацююча свiча в двигунi пiдвищує витрату палива на 10—15%, зниження температури охолоджувальної рiдини до 35—400С на 10— 12%, несправний регулятор випередження запалювання на 6—10%, наявнiсть нагару в камерах згоряння на 7—8%. Несправнiсть однiєї форсунки в дизельному двигунi пiдвищує витрату палива на 22—28% [71].

У бензинових двигунах особливо ретельно повинно проводитись регулювання карбюратора i, загалом, холостого ходу. В умовах вуличного руху двигун автомобiля працює 30% часу на холостому ходi, 30—40% — з постiйним навантаженням, 20—25% — в режимi розгону та 10—15% — в режимi гальмування. При цьому, в середньому, на холостому ходi автомобiль викидає 5—7% оксиду вуглецю до об’єму всього викиду, а в процесi руху з постiйним навантаженням тiльки 1—2,5%. При неправильно вiдрегульованому карбюраторi викид оксиду вуглецю на холостому ходi пiдвищується до 15%, а iнодi i бiльше. Одночасно на цьому режимі збiльшується в 2—2,5 рази викид вуглеводнiв та в 1,5 рази — альдегiдів.

Не меншу роль у справi зниження витрати палива вiдiграють досконалiсть органiзацiї руху по вулично-дорожнiй мережi та мистецтвоводіння автомобiля, яке полягає у тому, щоб по можливостi мати менше зупинок, а отже — холостого ходу, розгону та гальмування. В результатi можна зекономити до 20% палива. Слiд зазначити, що при сповiльненнi (гальмуваннi двигуном) вмiст альдегiдiв у вiдпрацьованих газах пiдвищуеться у 10 разiв. Таким чином, з позицiї зменшення забруднення повiтря необхiдно прагнути вести автомобiль так, щоб вiн бiльшу частину часу рухався з постiйним навантаженням.

Однак об’єктивна складнiсть вирiшення проблеми — збільшення вмiсту у вiдпрацьованих газах оксидiв азоту пiд час роботи двигуна з навантаженням. У цi перiоди об’єм даних сполук зростає у 30—35 разiв у порiвняннi з режимом холостого ходу.

5.2. Методи пiдвищення ефективностi роботи автомобiльних двигунів

Необхiднiсть захисту довкiлля вiд забруднення вiдпрацьованими газами i вимоги паливної економiчностi поставили перед конструкторами транспортних засобiв проблему пошуку прогресивних рiшень щодо конструкцiї i принципу роботи автомобiльних двигунiв. Одним з подiбних напрямкiв є розробка перспективних двигунiв для майбутнього автомобiльного транспорту [71].

В якостi альтернативи карбюраторному двигуну, з’явились дизель, роторний двигун, газова турбiна, парова поршнева машина, парова турбiна, двигун “зовнiшнього” згорання (Стирлінга), iнерцiйний двигун i деякi iншi.

Дизельний двигун. Вважається, що в боротьбi за зменшення забруднення повiтряного басейну дизельнi двигуни можуть зiграти iстотну роль. Дизель, так само як i карбюраторний двигун, вiдноситься до класу двигунiв внутрiшнього згоряння, але вiдрiзняється вiд нього значно вищими ступенями стиснення, що забезпечує самозаймання палива. Зважаючи на це, вiдпадає потреба в системах електричного запалення; замiсть карбюратора використовуються паливнi форсунки, завдяки яким пiд великим тиском здiйснюється впорскування палива у цилiндри.

Роторний двигун, як i карбюраторний, працює на бензинi, але має принципово іншу конструкцiю основного силового агрегату. У двигунi даного типу вiдсутнi цилiндри i шатунно-кривошипна група. Замiсть поршнiв, що виконують зворотно - поступальний рух, двигун має ротор.

Не вдаючись у деталi конструкцiйних i технiко - економiчних характеристик цього двигуна (менша маса, компактнiсть, висока обертовiсть, велика питома потужнсть, простота виробництва, відсутнiсть вiбрацiй, здатнiсть працювати на паливi з низьким октановим числом тощо), відзначимо, що вiн дає дещо менш токсичний викид у результатi меншого змiсту оксидiв азоту.

Давно запатентований нiмецьким механiком Ванкелем роторний двигун протягом багатьох рокiв допрацьовувався у Нiмеччинi, де у 1964 роцi було розпочато його невелике серiйне виробництво. Японськi промисловцi, якi придбали лiцензiю на двигун Ванкеля, витратили деякий час на його вдосконалення i в серединi 60-х рокiв створили працездатну конструкцiю. В 1967 роцi фiрма “Тойо Когiо” почала серiйний випуск автомобiлiв “Мацуда” з роторним двигуном i до 1980 року випустила мiльйон таких автомобiлв. 3 1970 року автомобiлi з роторними двигунами почали випускатися фiрмою “Сiтроєн” у Францiї. Концерн “Дженерал моторс”, який перекупив лiцензiю у Японiї, також проводив роботи над удосконаленням двигуна Ванкеля, проте дещо пiзнiше американцi вiдмовилися вiд продовження робiт.

У зв’язку з енергетичною кризою, виробництво автомобiлiв з роторними двигунами не одержало великого розвитку, за винятком вищезгадано японської фірми, яка вклала в дослiдження i органiзацiю виробництва цих двигунiв великi капiтали i яка продовжує їх випуск, одночасно вдосконалюючи конструкцію [71].

Подальше поширення роторного двигуна стримує його головний недолiк - менша економiчнiсть в порiвняннi з традицiйним поршневим.

Газотурбiнний двигун. Протягом останнiх рокiв проводяться дослiдження та експериментальне конструювання газотурбiнних двигунiв для автомобiлiв. Газовi турбiни, як вiдомо, широко застосовуються у повiтряному транспортi. Вони характеризуються малою масою, рекордною питомою потужнiстю, компактнiстю, малою кiлькiстю рухомих частин, плавнiстю роботи та iншими якостями.

Багато конструкторiв вважають газову турбiну бiльш перспективною для важких вантажних автомобiлiв i автобусiв, хоча є випадки створення також i легкових автомобiлiв. Так, ще на виставцi 1969 року в Чiкаго фiрма “Шевроле” демонструвала легковий автомобiль “Астра-111” з газотурбiнним двигуном потужнiстю 230 кВт при масi турбiни 70 кг.

У 70-х роках компанiя “Вiльямс” (США) розробила газову турбiну для масового легкового автомобiля потужнiстю 60 кВт. До переваг цього двигуна слiд вiднести вiдсутнiсть вiбрацiї, низький рiвень шуму, мож.ливiсть роботи без системи водяного охолодження i достатньо чистi вiдпрацьованi гази. Тоді ж було опублiковано прогнози, згiдно з якими в США у 1980 роцi намiчався випуск 50 тис. автомобiлiв, обладнаних такими двигунами. Проте цi сподiвання не виправдалися — основна причина цього полягає в меншiй економiчностi газових турбiн у порiвняннi з карбюраторним двигуном, а особливо - з дизелем.

Недостатнiй ККД газової турбiни пов’язаний з вiдносно невисокою температурою робочого процесу. Пiдвищення цiєї температури вимагає застосування дорогих жаромiцних металiв i складних конструкцiй турбiнних лопаток. Великий iнтерес становили випробування в Швецiї експериментального автомобiля з газовою турбiною, в конструкцiї якої використано жаромiцну керамiку, однак на даний час газотурбінний двигун ще залишається складним по конструкцiїi дорогим [71].

Паровий двигун. Вимога збереження в чистотi повiтряного басейну змусила деяких конструкторiв знову повернутися до майже забутоїiдеї створення парового автомобiля, що з’явився у Францiї та рядiiнших країн бiльш нiж 100 рокiв тому. Тихохiднi, але працездатнi паровi “омнiбуси” в Парижiїздили ще у 1873 роцi. Тодi ж було створено i легковi автомобiлi з паровими двигунами. Один екземпляр такого чотиримiсного автомобiля, побудованого французькою фiрмою “Жардне-Серполле”, можна бачити зараз в Нацiональному музеї в Празi. Парова машина, розмiщена пiд пiдлогою автомобiля, дозволяла йому розвивати швидкiсть 65 км/год. Паровi автомобiлiпродовжували випускатися i працювати впродовж довгого часу навiть після створення двигуна внутрiшнього згоряння i були остаточно знятi з виробництва на початку 30-х рокiв.