Смекни!
smekni.com

Проблемы захоронения радиоактивных отходов в геологических формациях (стр. 6 из 9)

Однако, радиационные эффекты при захоронении даже высокоактивных отходов имеют, по-видимому, не столь большое значение, так как даже γ -излучение в основном поглощается в матрице РАО, и лишь небольшая его доля проникает в окружающую породу на расстояние около метра. Влияние излучения ослабляется и тем, что в этих же пределах имеет место наибольшее термическое воздействие, вызывающее «отжиг» радиационных дефектов.

При использовании алюмосиликатных пород для размещения хранилища отходов положительно проявляются их сорбционные свойства, возрастающие под действием ионизирующего излучения.

В Европе и Канаде при планировании хранилищ предусмотрена предельная температура в 100° С и даже ниже, в США этот показатель равен 250° С. Некоторые авторы полагают, что нецелесообразно допускать подъем температу­ры хранилища выше 3030К, поскольку удаление сорбированнои поды может привести к нарушению целостности пород, появлению трещин и т.д. Однако другие считают, что для исключения поверхностного накопления пленок воды наиболее рациональной в хранилище следует считать температуру не ниже 313—3230К. так как при этом будет оптимальным радиационное газообразование с выделени­ем водорода.

Поскольку, в любой геологической породе присутствует сорбированная вода, именно она выступает в качестве первого выщелачивающего агента. Любая глинистая порода содержит значительное количество воды (до 12 %), которая в условиях повышенных температур, характерных для могильников радиоактивных отходов, будет выделяться в отдельную фазу и выступать в качестве первого выщелачивающего агента. Таким образом, создание глинистых барьеров в могильниках повлечет за собой процессы выщелачивания при любом варианте эксплуатации, включая условно сухой.[1]

3.1.2 Выбор места захоронения радиоактивных отходов.

Выбор места (площадки) для захоронения или хранения радиоактивных отходов, зависит от ряда факторов: экономических, правовых, социально-политических и природных. Особая роль отводится геологической среде — последнему и важнейшему барьеру защиты биосферы от радиационно опасных объектов.[5-7]

Пункт захоронения должен быть окружен зоной отчуждения, в которой допускается появление радионуклидов, но за ее границами активность никогда не достигает опасного уровня. Посторонние объекты могут быть расположены не ближе, чем на расстоянии 3 радиусов зоны от пункта захоронения. На поверхности эта зона носит название санитарно-защитной, а под землей представляет собой отчужденный блок горного массива.

Отчужденный блок необходимо изъять из сферы человеческой деятельности на период распада всех радионуклидов, поэтому он должен располагаться за пределами месторождений полезных ископаемых, а также вне зоны активного водообмена. Проводимые при подготовке к захоронению отходов инженерные мероприятия должны обеспечить необходимый объем и плотность размещения РАО, действие систем безопасности и надзора, а том числе долговременный контроль за температурой, давлением и активностью в пункте захоронения и отчуждаемом блоке, а также за миграцией радиоактивных веществ по горному массиву.

С позиций современной науки, решение о конкретных свойствах геологической среды на участке хранилища должно быть оптимальным, то есть отвечающим всем поставленным целям, и прежде всего гарантирующим безопасность. Оно должно быть объективным, то есть защищаемым перед всеми заинтересованными сторонами. Такое решение должно быть доступным для понимания широкой общественности.

Решение должно предусмотреть степень риска при выборе территории для захоронения РАО, а также опасность возникновения различных чрезвычайных ситуаций. При оценке геологических источников риска загрязнения окружающей среды необходимо учитывать физические (механические, тепловые), фильтрационные исорбционные свойства горных пород; тектоническую обстановку, общую сейсмическую опасность, новейшую активность разломов, скорость вертикальных движений блоков земной коры; интенсивность изменения геоморфологических характеристик: водообильность среды, активность динамики подземныhttp://zab.chita.ru/admin/pictures/426.jpgх вод, включая влияние глобального изменения климата, подвижности радионуклидов в подземных водах; особенности степени изоляции от поверхности водонепроницаемыми экранами и образования каналов гидравлической связи подземных и поверхностных вод; наличие ценных ресурсов и перспектив их обнаружения. Эти геологические условия, определяющие пригодность территории для устройства хранилища, должны оцениваться независимо, по представительному параметру для всех источников риска. Они должны обеспечить оценку по совокупности частных критериев, связанных с горными породами, гидрогеологическими условиями, геологическими, тектоническими и минеральными ресурсами. Это позволит экспертам дать корректную оценку пригодности геологической среды. При этом неопределенность, связанная с узостью информационной базы, а также и с субъективизмом экспертов, может быть уменьшена применением оценочных шкал, ранжированием признаков, единой формой опросных листов, компьютерной обработкой результатов экспертизы. Сведения о типе, количестве, ближайшей и долгосрочной динамике поступления ОЯТ предоставят возможность выполнить районирование территории области, чтобы оценить пригодность участков для размещения хранилища, устройства (использование) коммуникаций, развития инфраструктуры и прочих смежных, но не менее важных проблем.

3.2 Глубокое геологическое захоронение РАО .

Продолжительный масштаб времени, в течение которого некоторые из отходов остаются радиоактивными, привел к идее глубокого геологического захоронения в подземных хранилищах в устойчивых геологических формациях. Изоляция обеспечивается комбинацией инженерных и естественных барьеров (горная порода, соль, глина), при этом никаких обязательств по активному обслуживанию такого захоронения не передается будущим поколениям. Этот метод часто называют многобарьерной концепцией с учетом того, что упаковка отходов, инженерное оборудование хранилища и сама геологическая среда – все это обеспечивает барьеры по предотвращению достижения радионуклидами людей и окружающей среды.

Хранилище включает в себя пройденные в горных породах туннели или пещеры, в которых размещаются упакованные отходы. В некоторых случаях (например, влажная горная порода) контейнеры с отходами затем окружаются материалом типа цемента или глины (обычно бентонит), чтобы обеспечить дополнительный барьер (называемым буфером или закладкой). Выбор материалов для контейнеров с отходами, а также проекта и материалов для буфера изменяется в зависимости от типа отходов, которые нужно сдерживать, и от характера пород, в которых закладывается это хранилище.

Ведение проходческих и земляных работ при сооружении глубокого подземного хранилища, использующих стандартную технологию горных работ или гражданского строительства, ограничено доступными для этого местами (например, под участком суши или под прибрежной зоной), блоками горной породы, являющиеся достаточно стабильными и не содержащими большого потока грунтовых вод, и глубинами между 250 и 1000 метрами. При глубине более 1000 метров, выемка грунта становится в большей степени технически трудной и, соответственно, более затратной.

Глубокое геологическое захоронение остается предпочтительным вариантом обращения с радиоактивными долгоживущими отходами во многих странах, включая Аргентину, Австралию, Бельгию, Чешскую Республику, Финляндию, Японию, Нидерланды, Республику Корея, Россию, Испанию, Швецию, Швейцарию и США. Таким образом, достаточно доступной информации по различным концепциям захоронения; несколько примеров приводятся здесь. Единственное специально построенное глубокое геологическое хранилище для долгоживущих отходов среднего уровня активности , которое в настоящее время лицензировано для операций по захоронению, находится в США. Планы по захоронению отработавшего топлива хорошо проработаны в Финляндии, Швеции и США, причем ввод в эксплуатацию первого такого сооружения запланирован к 2010 году. Политика по глубокому захоронению в настоящее время рассматривается в Канаде и Великобритании.

3.3 Приповерхностное захоронение

МАГАТЭ определяет этот вариант как захоронение радиоактивных отходов с инженерными барьерами или без них в:

1. Приповерхностные захоронения на уровне земли. Эти захоронения находятся на или ниже поверхности, где толщина защитного покрытия составляет примерно несколько метров. Контейнеры с отходами размещаются в построенных камерах для хранения, и когда камеры заполняются, они забутовываются (засыпаются). В конечном счете, они будут закрыты и покрыты непроницаемой перегородкой и верхним слоем почвы. Эти захоронения могут включать некоторую форму дренажа и, возможно, газовую систему вентиляции.

2. Приповерхностные захоронения в пещерах ниже уровня земли. В отличие от приповерхностного захоронения на уровне земли, где выемка грунта проводится с поверхности, неглубокие захоронения требуют подземной выемки грунта, но захоронение располагается на глубине нескольких десятков метров ниже поверхности земли и доступно через слабонаклонную горную выработку.

Термин '"приповерхностное захоронение" замещает термины "поверхностное захоронение" и "захоронение в землю", но эти, более старые, термины все еще иногда используются, когда ссылаются на этот вариант.

На эти захоронения могут воздействовать долгосрочные изменения климата (например оледенение), и этот эффект должен приниматься во внимание при рассмотрении аспектов безопасности, так как такие изменения способны вызывать разрушение этих захоронений. Однако этот тип захоронения обычно используется для отходов низкого и среднего уровня активности, содержащих радионуклиды с коротким периодом полураспада (приблизительно до 30 лет).