Смекни!
smekni.com

Хроматографические методы анализа и их использование в анализе объектов окружающей природной среды (стр. 1 из 7)

Курсовая работа

На тему

«Хроматографические методы анализа и их использование в анализе объектов окружающей природной среды»

Содержание

Введение

Глава 1. Хроматография в современной химии

1.1. Основные виды хроматографии

1.2. Методы проявления хроматограмм

1.3. Работа хроматографа

Глава 2. Применение хроматографических методов в экологическом мониторинге

2.1. Аппаратура для хроматографии

Глава 3. Примеры применения хроматографии в анализе объектов окружающей среды

Глава 4. Современное аппаратурное оформление

Литература


Введение

Исключительно мощное средство контроля загрязнения различных объектов окружающей среды - хроматографические методы, позволяющие анализировать сложные смеси компонентов. Наибольшее значение приобрели тонкослойная, газожидкостная и высокоэффективная жидкостная и ионная хроматография. Будучи несложной по технике выполнения, тонкослойная хроматография хороша при определении пестицидов и других органических соединений-загрязнителей. Газожидкостная хроматография эффективна при анализе многокомпонентных смесей летучих органических веществ. Применение различных детекторов, например малоизбирательного детектора по теплопроводности - катарометра и избирательных - пламенно-ионизационного, электронного захвата, атомно-эмиссионного, позволяет достигать высокой чувствительности при определении высокотоксичных соединений. Высокоэффективную жидкостную хроматографию применяют при анализе смесей многих загрязняющих веществ, прежде всего нелетучих. Используя высокочувствительные детекторы: спектрофотометрические, флуориметрические, электрохимические, можно определять очень малые количества веществ. При анализе смесей сложного состава особенно эффективно сочетание хроматографии с инфракрасной спектрометрией и особенно с масс-спектрометрией. В последнем случае роль детектора играет подключенный к хроматографу масс-спектрометр. Обычно приборы такого типа оснащены мощным компьютером. Так определяют пестициды, полихлорированные бифенилы, диоксины, нитрозоамины и другие токсичные вещества. Ионная хроматография удобна при анализе катионного и анионного составов вод.


Глава 1. Хроматография в современной химии

Одна из важных задач современной химии – надежный и точный анализ органических веществ, часто близких по строению и свойствам. Без этого невозможно проведение химических, биохимических и медицинских исследований, на этом в значительной степени базируются экологические методы анализа окружающей среды, криминалистическая экспертиза, а также химическая, нефтяная, газовая, пищевая, медицинская отрасли промышленности и многие другие отрасли народного хозяйства.

Один из наиболее чувствительных методов – хроматографический анализ, впервые предложенный российским ученым М.С.Цветом в начале XX в. и к концу века превратившийся в мощнейший инструмент, без которого уже не могут обходиться как синтетики, так и химики, работающие в других областях.

Разделение Цвет проводил в колонке, показанной на рис. 1. Смесь веществ А, Б и В – природных пигментов, первоначально находящихся в зоне е, – разделяется при приливании соответствующего растворителя Д (элюент) на отдельные зоны.

Рис. 1. Хроматографическое разделение пигментов хлорофилла М.C.Цветом: а – адсорбент; б – колонка; в – приемник; г – делительная воронка; д – вата.


Смесь веществ А, Б и В, сначала находящихся в зоне е, разделяется при элюировании растворителем Д (элюент) на отдельные зоны, движущиеся с разными скоростями к выходу из колонки.

Хроматография основана на распределении одного из нескольких веществ между двумя, как говорят, фазами (например, между твердым телом и газом, между двумя жидкостями и др.), причем одна из фаз постоянно перемещается, т. е. является подвижной.

Это значит, что такая фаза, например газ или жидкость, все время продвигается, нарушая равновесие. При этом чем лучше то или иное вещество сорбируется (поглощается) или растворяется в неподвижной фазе, тем скорость его движения меньше, и, наоборот, чем меньше сорбируется соединение, т. е. обладает меньшим сродством к неподвижной фазе, тем скорость перемещения больше. В итоге, как показано на рис. 2, если вначале мы имеем смесь соединений, то постепенно все они, подталкиваемые подвижной фазой, движутся к «финишу» с различными скоростями и в конце концов разделяются.

Рис. 2. Основной принцип хроматографического разделения: НФ – слой неподвижной фазы, покрывающей внутреннюю поверхность капиллярной трубки Т, через которую течет подвижная фаза (ПФ). Компонент А1 разделяемой смеси обладает большим сродством к подвижной фазе, а компонент А2 – к неподвижной фазе. А '1 и А '2 – положения зон тех же компонентов через промежуток времени, за которое происходило хроматографическое разделение в направлении, указанном стрелкой

Практически образец смеси веществ вводят, например, шприцем в слой неподвижной фазы, а затем различные соединения, входящие в состав смеси, вместе с подвижной фазой (элюент) двигаются вдоль слоя, подгоняемые этой фазой. Скорость перемещения зависит от величины взаимодействия (сродство) компонентов в неподвижной и подвижной фазах, и в результате достигается разделение компонентов.

После разделения необходимо идентифицировать все компоненты и оценить их количественно. Такова общая схема хроматографии.

Следует отметить, что этот современный метод позволяет в течение нескольких минут определить содержание десятков и сотен различных соединений в смеси, причем даже в ничтожных, «следовых» количествах ~10–8%. [1-3]

Хроматографический способ анализа.

Хроматографические системы можно разделить по следующим принципам:

– агрегатное состояние подвижной и неподвижной фаз;

– геометрические характеристики системы;

– механизм взаимодействия между разделяемым веществом и фазами.

В качестве подвижной фазы используется газ или жидкость. В качестве неподвижной, или стационарной, фазы применяются твердые вещества или жидкости.

По расположению фаз хроматографические системы подразделяют на две группы: плоскостные и колоночные.

Последние, в свою очередь, разделяются на:

– насадочные, заполненные зернистым твердым материалом (мелкие шарики), либо являющимся разделительной средой, либо служащим носителем неподвижной жидкой фазы;

– капиллярные, внутренние стенки которых покрыты пленкой неподвижной жидкости или слоем твердого адсорбента (поглотитель).

Взаимодействие между разделяемым веществом и фазами хроматографической системы может осуществляться или на поверхности фазы, или в объеме. В первом случае хроматография называется адсорбционной, во втором – распределительной.

Механизмы разделения молекул в хроматографических системах чаще всего сводятся к следующим:

– неподвижная фаза физически поглощает (сорбирует) разделяемые вещества;

– неподвижная фаза химически взаимодействует с разделяемыми веществами;

– неподвижная фаза растворяет разделяемые вещества из раствора в несмешивающемся растворителе;

– неподвижная фаза имеет пористую структуру, затрудняющую диффузию молекул разделяемых веществ в этой фазе.

Хроматография, начавшись с самодельных устройств типа полоски бумаги, опущенной в растворитель, в настоящее время представлена сложнейшими инструментальными системами, основанными на современных точнейших, или прецизионных, принципах и оснащенными компьютерным обеспечением. Схема процесса хроматографирования, в сущности, очень проста и показана на рис. 3. Далее примерно в такой последовательности будет рассмотрен принцип работы хроматографа.

1.1 Основные виды хроматографии

К основным видам хроматографии относят адсорбционную, ионообменную, жидкостную, бумажную, тонкослойную, гель-фильтрационную и афинную хроматографию.

Адсорбционная хроматография. В этом случае разделение веществ осуществляется за счет выборочной (селективной) адсорбции веществ на неподвижной фазе. Такая селективная адсорбция обусловлена сродством того или иного соединения к твердому адсорбенту (неподвижной фазе), а оно, в свою очередь, определяется полярными взаимодействиями их молекул. Поэтому часто хроматографию такого типа используют при анализе соединений, свойства которых определяются числом и типом полярных групп. К адсорбционной хроматографии причисляют ионообменную, жидкостную, бумажную, тонкослойную и газо-адсорбционную хроматографию.

Рис. 4. Изображение структуры частицы ионообменной смолы:  – заряженные функциональные группы, ковалентно связанные с нитями решетки; – свободно перемещающиеся противоположно заряженные протовоионы, электростатически связанные с частицей смолы, способные претерпевать обмен с другими ионами.

Ионообменная хроматография. В качестве неподвижной фазы используют ионообменные смолы (рис. 4) как в колонках, так и в виде тонкого слоя на пластинке или бумаге. Разделение обычно проводят в водных средах, поэтому этот метод используется главным образом в неорганической химии, хотя применяются и смешанные растворители. Движущей силой разделения в этом случае является различное сродство разделяемых ионов раствора к ионообменным центрам противоположной полярности в неподвижной фазе.

Жидкостная хроматография. В этом случае неподвижной фазой служит жидкость. Наиболее распространенным случаем является адсорбционный вариант жидкостной колоночной хроматографии. Пример разделения природных пигментов представлен на рис. 5.