Смекни!
smekni.com

Чи є вихід із глобальної екологічної кризи (стр. 4 из 5)

Найнебезпечнішими для життя людей є посухи (їх жертвами виявилися майже 49% загиблих у природних катастрофах). Тайфуни і шторми забрали життя близько 26%, землетруси – 17% від загального числа загиблих. Більше від половини (53%) всіх жертв припадає на Африку, на Азіатський континент – 37%. На Америку, Європу й Океанію припадає відповідно 7,4; 2,5 і 0,1%. В Африці особливо багато жертв спричинюють посухи, в Азії – тропічні циклони і шторми.

Загальна кількість людей, що постраждали від семи видів природних катастроф за останні 35 років, становить 4,4 млрд, осіб, тобто майже 3/4 населення Землі. Вже сьогодні така країна, як Японія, вимушена витрачати на боротьбу з природними лихами до 5% свого річного бюджету (0,8% валового національного продукту), що становить 23-25 млрд. дол. на рік. В Китаї щорічні збитки від природних катастроф дорівнюють у середньому 3-6% валового національного продукту.

Враховуючи те, що разом із збільшенням природних лих спостерігається зростання технічних катастроф, у перспективі економіка багатьох країн не в змозі буде компенсувати втрати від надзвичайних ситуацій природного і техногенного характеру. Збільшення кількості природних лих у світі пов'язане з низкою глобальних процесів у соціальній, природній і техногенній сферах, які обумовлюють інтенсифікацію розвитку небезпечних природних явищ і зниження захищеності людей на Землі. Однією з причин збільшення кількості природних і особливо техногенно-природних небезпечних явищ, збільшення жертв і матеріальних втрат є зростання людської популяції.

• Зростання кількості населення. З найдавніших часів і до XX ст. кількість населення на Землі змінювалася незначним чином, то зростаючи до декількох сотень мільйонів, то зменшуючись через епідемії і голод. На початку XIX ст. вона залишалася трохи меншою від 1 млрд. Проте з початком індустріального періоду розвитку ситуація різко змінилася, кількість населення подвоїлася, а приблизно через ЗО років – потроїлася. У 1975 р. вона перевищила 4 млрд., а в 1987 р. – 5 млрд, осіб. 12 жовтня 1999 р. народився 6-мільярдний мешканець планети. У середньому кількість населення Землі нині зростає щорічно на 86 млн. осіб, що співмірно з величиною населення Німеччини. Понад 80% (4,8 млрд, осіб) живуть у країнах, що розвиваються, на частку яких припадає майже весь приріст чисельності населення Землі. Згідно з прогнозами, глобальна кількість населення до 2025 р. становитиме близько 9 млрд. осіб.

Загалом, при прогнозуванні змін стану біосфери, необхідно виходити з існування двох основних передумов розвитку небезпечних природних явищ - історичної (еволюційної) і антропогенної. Еволюційні процеси розвитку нашої планети приводять до безперервної реорганізації речовини в твердій, рідкій і газоподібній оболонках Землі з виділенням і поглинанням енергії, до зміни напружено-деформованого стану земної кори і взаємодії фізичних полів різної природи. Процеси, що відбуваються, лежать в основі глобальної геодинаміки і розвитку ендогенних, екзогенних, гідрологічних та атмосферних явищ.

Водночас головними перешкодами для підвищення якості навколишнього середовища є антропогенний чинник та розвиток деяких секторів економіки. Не викликає сумнівів, що в першому десятиріччі XXI ст. ці тенденції тільки наростатимуть, їх негативної дії на природу не вдасться виключити. До подібних тенденцій відносяться дедалі сильніший вплив транспорту, урбанізація, деградація сільського навколишнього середовища, втрата біорізноманітності тощо. Серйозна проблема – відсутність методів кількісного обліку чинників соціально-економічного розвитку, які впливають на екодинаміку, що визначає значення розробок індикаторів сталого розвитку, у тому числі комплексних, як ВВП та «індекс благополуччя», і дозволяє обґрунтувати адекватну екологічну політику.

Інстинкт самозбереження і збільшення густоти населення зумовлював дедалі швидший розвиток методів створення штучного середовища існування й отримання продуктів харчування. При цьому існувала ілюзія про нескінченність природних ресурсів і необхідність лише навчитися їх повноцінно використовувати. Відоме гасло початку XX ст., висунуте І. В. Мічуріним: «Ми не можемо чекати милостей від природи...» У XX ст. почалася епоха хімізації сільського господарства. У 60-х роках цього століття агресивне ставлення людини до навколишнього середовища призвело до поступової глобалізації екологічних змін, навіть до змін клімату. Можливо, саме інстинкт самозбереження і зумовив потужний розвиток космічних досліджень у цей час.

Проте нічого особливо втішного вони не принесли. Стало очевидним, що за таких стрімких екологічних змін людина не зможе встигнути знайти собі нове середовище існування на іншій планеті, тобто вчинити так, як вона діяла звичайно: виснаживши один регіон, мігрувати до наступного. Отже, настав час, коли самозбереження людини як виду шляхом агресивної зміни навколишнього середовища стає принципово неможливим.

Де ж вихід?

Один із них – не боротися з природою, а слідувати їй.

У принципі, все життя людина користувалася цим шляхом, створюючи нові форми тварин і рослин, потрібні для неї. Всю історію людства, починаючи з одомашнення першої тварини, першої вирощеної самостійно рослини, відбувалася їх спільна еволюція. Проблема полягала тільки в тому, що швидкість еволюції сільськогосподарських видів була набагато меншою, ніж потрібно людині. Особливо гостро цей розрив став відчутним саме у XX ст. Постало нове завдання: для того, щоб вижити, людству потрібно навчитися керувати швидкістю еволюції живих організмів. А як це зробити? Підглянути, як еволюціонують види в живій природі, і спробувати використовувати її прийоми. З постановки такого завдання і почала розвиватися генна інженерія, що розробляє методи отримання генетично модифікованих організмів.

Генетика оформилася як наука на початку XX ст. після перевідкриття законів Менделя. Бурхливий період її розвитку завдовжки у століття ознаменований останніми роками розшифруванням нуклеотидного складу геномної ДНК десятків видів вірусів, бактерій, грибів і слідом за ними низки багатоклітинних організмів: рослина арабідопсис, нематода, дрозофіла, людина. Повним ходом іде секвенування ДНК хромосом важливих культурних рослин – рису, кукурудзи, пшениці.

З'явилася і бурхливо розвивається генна терапія спадкових хвороб, виробництво генетично змінених форм рослин. Успішне соматичне клонування ссавців (овечка Доллі), поява молекулярної палеогенетики – вражаючі досягнення науки генетики. ДНК-технологія і біотехнологія, методи та завдання яких зрозумілі, а успіхи мають публічний ефект, трансформували вид сучасної генетики. Бурхливий розвиток ДНК-технології поставив низку нових запитань, наприклад, виявилося, що лише 3-5% генома людини кодують білки і, можливо, ще близько 20% беруть участь у регуляції дії генів у ході розвитку. Функція решти фракцій 75% ДНК генома залишається абсолютно не зрозумілою. Гени в геномі можна порівнювати з невеликими островами в морі неактивних неінформаційних послідовностей.

Генна інженерія за своєю суттю не є чимось якісно відмінним від природних процесів, чимось чужорідним для живих об'єктів, як, наприклад, отримання штучно синтезованих хімічних сполук, відсутніх у природі, а, навпаки, становить собою повтор підглянутих у природі прийомів.

Отримання трансгенних рослин нині перетворилося на досить рутинну технологію для вирішення практичних завдань, якими займаються як наукові установи, так і комерційні фірми. В Інституті цитології та генетики Сибірського відділення РАН обрали для своєї прикладної діяльності отримання так званих їстівних вакцин. Цим займаються багато лабораторій у світі, але поки що на експериментальному рівні. На перших етапах роботи отримано трансгенні рослини тютюну і люцерни з геном р-інтерферону людини, дуже потужного імуногенного чинника. Потім взялися за створення трансгенних рослин тютюну і люцерни з генами імуногенних білків мікобактерій, що викликають туберкульоз, і з генами оболонки вірусу гепатиту В. При експресії подібних генів у рослинах передбачається в організмах тварин, що їх з'їли, отримати імунну відповідь з утворенням антитіл на продукований антиген. Інакше кажучи, буде здійснено природну вакцинацію за стійкістю до захворювання туберкульозом або гепатитом В.

На сьогодні у 120 видів рослин існують трансгенні форми. Дозволено використання трансгенних сої, кукурудзи, бавовника, рапсу, картоплі, томатів, буряка, гарбуза, тютюну, папайї, льону; закінчуються випробування трансгенного рису і пшениці. Трансгенні рослини вирощуються в 11 країнах світу – США, Китаї, Аргентині, Канаді, Австралії, Мексиці, Іспанії, Франції, Південній Африці, Португалії та Румунії. У 2000 р. ними було зайнято площу близько 40 млн. га.

З використанням трансгенних рослин були вирішені питання гербіцидостійкості, стійкості до комах, вірусів, грибкових та бактеріальних захворювань, регулювання термінів дозрівання, підвищення загальної продуктивності, виробництва їстівних вакцин. Сьогодні зі всіх вирощуваних трансгенних рослин 71% стійкі до гербіцидів, 22% – до шкідників і 7% – до гербіцидів та шкідників (здебільшого соя. кукурудза, бавовник, рапс). Ведеться пошук способів різкого підвищення продуктивності рослин.

Вважається, що трансгенез у рослин і тварин – найперспективніша біотехнологія для вирішення продовольчої та медичної проблем на найближче десятиріччя. Трансгенні тварини – кози, вівці, свині, корови – використовуються для секреції (під промоторами «генів молока») високоактивних біологічних речовин для медицини та фармакології. Вже пройшли ліцензування і надійшли на ринок отримані від трансгенних тварин антитрипсин, що використовується при легеневих захворюваннях, антитромбін для запобігання інфарктів та інсультів, фактори осілості крові, білок С, що має захисні функції, тощо.