Смекни!
smekni.com

Использование радиоактивационного метода в анализе объектов окружающей природной среды (стр. 3 из 6)

По сравнению с другими аналитическими методами в нейтронно-активационном анализе намного меньшее влияние так называемого «матричного эффекта». Это означает, что на определение примесных элементов практически не сказываются микроэлементы, составляющие основу вещества. Иными словами, нейтронно-активационному методу доступно измерение содержания микроэлементов в самых разнообразных материалах.

Источники нейтронов. В качестве источника нейтронов используются: радиоизотопные (ампульные) источники, ядерные реакторы и нейтронные генераторы.

В радиоизотопных источниках используются нейтроны спонтанного деления (252Cf) или реакции типа (

,n) и (
,n). Один миллиграмм 252Cf испускает 2.28·109 нейтронов в секунду с энергией 1.5 МэВ. Нейтронный источник, использующий реакции (
,n), должен содержать альфа-источник и легкий изотоп (Li, Be, B) на котором происходит реакция (
,n). Использование легких изотопов связана с тем, что энергия альфа-частиц должна быть больше высоты кулоновского барьера. В противном случае сечение реакции будет сильно подавлено. Например, в Pu/Be источнике используется смесь металлического порошка бериллия с небольшим количеством
-излучателя - полония. Нейтроны образуются в реакции 9Be(
,n)12C. В этом источнике получаются нейтроны, обладающие практически сплошным спектром энергий от 0 до 13 МэВ.

Источником нейтронов, основанным на фотоядерной реакции, является смесь радия и бериллия. В этом случае источник нейтронов представляет собой систему из двух запаянных ампул. Внутри ампулы с порошком бериллия помещается ампула с солями радия таким образом, что на бериллий действует только гамма-излучение, проходящее через стенки внутренней ампулы. Нейтроны образуются в реакции 9Ве(

,n)8Ве. , Такой источник испускает монохроматические нейтроны с энергией 110 кэВ. Интенсивность радиоизотопных источников 106-108 нейтронов/c, а предел обнаружения элементов ~10-4-10-6%.

Ядерные реакторы являются мощными источниками нейтронов. Спектр нейтронов очень широк. В нем выделяют 3 компоненты - тепловые, эпитепловые (резонансные) и быстрые нейтроны (Рис.4).

Рис. 4. Типичный спектр нейтронов реактора

Тепловые нейтроны это нейтроны с энергией < 0.5 эВ. Они находятся в тепловом равновесии с атомами материала реактора. При комнатной температуре они имеют энергетическое распределение Максвелла-Больцмана со средней энергией 0.025 эВ и наиболее вероятной скоростью 2200 м/с. При облучении образцов, как правило, 90-95% нейтронного потока составляют тепловые нейтроны. Реактор мощностью 1 МВт обеспечивает нейтронный поток ~1013 (cм-2с-1). Предел обнаружения большинства элементов при использовании таких потоков составляет 10-5-10-10%.

Эпитермальные нейтроны имеют энергии в диапазоне от 0.5 эВ до ~0.5 МэВ. Их доля в реакторе ~2%. Кадмиевая пластинка толщиной 1 мм поглощает все тепловые нейтроны, но пропускает эпитепловые и быстрые нейтроны. Как тепловые, так и эпитепловые нейтроны вызывают в мишени реакции (n,

). Доля быстрых нейтронов (> 0.5 МэВ) в реакторе составляет ~5%. Они вызывают реакции (n,p), (n,n') и (n,2n) и практически не вызывают реакции (n,
).

Нейтронные генераторы - это ускорители, в которых нейтроны образуются в результате ядерных реакций на соответствующих мишенях. Чаще всего используются реакции

2H(d,n)3He, Q = 3.270 МэВ,

3H(d,n)4He, Q = 17.590 МэВ.

В результате этих реакций получаются нейтроны с энергиями ~2.5 МэВ и ~14.1 МэВ. Так как сечения этих реакций достаточно велики при небольших энергиях дейтронов, можно обойтись небольшими ускорителями. Максимум сечения реакции 3H(d,n)4He достигается при энергии Td

120 кэВ. Обычно используются каскадные генераторы. Типичный выход нейтронов у нейтронных генераторов ~1010 c-1. Использование быстрых нейтронов позволяет проводить анализ легких элементов (C, N, O), которые плохо активирующихся тепловыми нейтронами.

Гамма-активационный анализ. Гамма-активационный анализ основан на ядерных реакциях, при которых жесткие фотоны возбуждают реакции с выходом нейтронов и протонов. Среди большого числа методов элементного анализа гамма-активационный анализ выделяется большой селективностью и чувствительностью. Фотоядерные реакции позволяют активировать практически все элементы периодической системы с пределом обнаружения до 10-7%. Для гамма-активационного анализа используется тормозное излучение высокой интенсивности (1015 – 1015 квант/с), которое получают на электронных ускорителях. В качестве источника фотонов в настоящее время используется тормозное излучение электронов с энергиями 10—30 МэВ. Важной характеристикой источника фотонов, определяющей эффективность гамма-активационного анализа, является спектральная яркость излучения. Гамма-активационный анализ в частности позволяет эффективно анализировать такие элементы, как Ca, Ni, Ti, Tl и Pb. Преимуществом гамма-активационного анализа перед нейтронно-активационным анализом является также то, что гамма-кванты могут глубже проникать в образец, следовательно, анализу могут подвергаться образцы больших размеров.[1-3]

Нейтронный активационный анализ на реакторе ибр-2 в Дубне в решении задач охраны окружающей среды и развитии новых технологий

Инструментальный нейтронный активационный анализ в ЛНФ ОИЯИ в настоящее время используется в изучении воздушных загрязнений по координационной программе МАГАТЭ и проектам с рядом стран-участниц ОИЯИ. Биомониторинг атмосферных выпадений тяжелых металлов и других элементов, проводимый с помощью мхов и лишайников с последующим применением ГИС технологий (географические информационные системы), позволяет создавать карты распределений элементов-загрязнителей на исследуемых территориях.

В секторе активационного анализа и радиационных исследований ЛНФ ОИЯИ выполнен цикл работ по Центральной России (север Московской области, Тверская, Ярославская и Тульская области) на Южном Урале (Челябинская область), Кольском полуострове (Хибины), на Украине (территории, прилежащие к Румынии), а также Болгарии, Польше, Румынии, Югославии, Словакии, Чехии и Южной Корее.

С помошью эпитеплового нейтронного активационного анализа была определена концентрация 42 элементов в образцах биомониторов как из загрязненных, так и из фоновых районов [6-8].

Анализ объектов окружающей среды (мониторинг рабочих мест и здоровье персонала, занятого в производстве фосфорных удобрений) с помощью ядерно-физических методов - НАА в комбинации с атомной абсорбцией и рентгено-флюоресцентным анализом - проводится в рамках координационной программы МАГАТЭ по оценке уровней загрязнения воздуха на рабочих местах и влияния на здоровье человека опасных производствах. Производство фосфорных удобрений связано с таким патологическим воздействием на здоровье персонала, занятого в его производстве, как флюорозы, заболевание органов дыхания и другие [9].

С помошью ядерно-физических методов анализа установлена корреляция между концентрациями элементов-загрязнителей в исходном промышленном сырье, отходах производства и ситуацией на рабочих местах. Это позволяет, в свою очередь, определить, как биосубстраты человека следуют уровню патологических изменений в организме вследствие техногенного воздействия окружающей среды. Стратегия мониторинга, развитая в России в этом проекте, предложена для распространения на сходных заводах по производству фосфорных удобрений в Узбекистане, Польше, Румынии в рамках Пятой программы COPERNICUS-1999 Европейского сообщества.

Применение НАА к анализу селен-, йод- и хром-содержащих фармацевтических препаратов на основе сине-зеленой водоросли Spirulinaplatensis, используемой в качестве матрицы, позволило отработать технологию производства этих препаратов и продемонстрировало большой потенциал Spirulinaplatensis. В исходной биомассе этой водоросли методом НАА впервые определено содержание 31 макро- микро- и следовых элементов (Na, Mg, Al, Cl, K, Ca, Sc, V, Cr, Mn, Fe, Co, Ni (используя (n,p) реакцию), As, Br, Zn, Rb, Mo, Ag, Sb, I, Ba, Sm, Tb, Tm, Hf, Ta, W, Au, Hg и Th). Изучено накопление селена, йода и хрома биомассой спирулины в зависимости от нагрузки питательно среды этими элементами [10, 11].

НАА на реакторе ИБР-2 в Дубне успешно применяется в изучении бактериального выщелачивания металлов и других элементов из обедненных руд [12].

Приведенные примеры наглядно демонстрируют практическое использование НАА в науках о жизни.

ГЛАВА 2. ПРИМЕНЕНИЕ РАДИОАКТИВАЦИОННОГО АНАЛИЗА

Определение элементного и изотопного состава веществ и материалов является актуальной аналитической задачей, имеющей широкую область применения. Основными требованиями, предъявляемыми к выполнению аналитических работ в области исследования элементного и изотопного состава веществ, является высокая чувствительность, оперативность и качество анализов при их низкой себестоимости. Одним из наиболее универсальных и чувствительных методов определения элементного и изотопного состава веществ является нейтронно-активационный анализ (НАА).