Смекни!
smekni.com

Использование радиоактивационного метода в анализе объектов окружающей природной среды (стр. 4 из 6)

Исследовательские ядерные реакторы широко используют в качестве источника нейтронов для проведения НАА. Одними из наиболее распространенных по количеству установок и их разнообразию является класс импульсные реакторов самогасящегося действия (ИРСД). В этом классе существует подкласс ядерных установок с предельными характеристиками нейтронного потока (порядка 1018 см-2с-1), используемых для проведения экспериментов, связанных с авариями реактивностного типа, изучением поведения материалов при облучении в интенсивном поле ионизирующих излучений и другими специализированными задачами. Использование подобных реакторов для выполнения НАА представляется целесообразным по причинам расширения области их применения и увеличения загруженности экспериментальными работами.

Перспективность работ, связанных с определением содержания благородных металлов и делящихся материалов в пробах различного характера (геологических, экологических и т.п.) определяется постоянным и устойчивым спросом на их проведение.

В зависимости от типа реакторной установки, ее нейтронно-физических и технических характеристик возникают различные возможности в облучении проб и проведении анализов. Для реализации этих возможностей требуется разработка специальных методов и технологий, наиболее полно отвечающих экспериментальной базе и содержанию аналитических задач. Процесс облучения материалов с помощью ИРСД отличается нелинейностью и скоротечностью. Кроме того, к качеству определения нейтронных характеристик в НАА предъявляются высокие требования - погрешность их выполнения не должна превышать 5%, чтобы не оказывать значительного влияния на результирующую ошибку анализов. Добиться выполнения указанного требования с помощью детекторов прямого измерения ионизирующего излучения не представляется возможным. Поэтому для определения характеристик нейтронного поля в ИРСД использовался метод активационных детекторов. К подготовке проб, содержащих драгоценные металлы, предъявляются особые требования. Это связано не только с потребностью в высокой чувствительности и качестве анализов, что характерно также и в случае определения делящихся материалов. Наличие больших неоднородностей состава, а также возможное присутствие самородных частиц обуславливают неординарные требования к представительности. Подготовленная к анализам проба должна иметь массу 50−100 г. В то время как для проб гомогенного состава эта величина обычно не превышает нескольких граммов и даже миллиграммов. В условиях облучения в интенсивных полях ионизирующих излучений специальные требования предъявляются ко всем используемым в ИРСД материалам. Сильный радиационный разогрев в условиях отсутствия принудительного охлаждения может привести к частичному или полному их разрушению.

Согласно действующим нормативным документам результаты определения содержания драгоценных металлов и делящихся материалов в пробах методом НАА с помощью ИРСД должны отвечать требованиям одной из перечисленных категорий: особо точный анализ, анализ рядовых проб, особо точный анализ геохимических проб.

Для выполнения анализов являются пригодными любой из традиционно используемых в активационных исследованиях методов: абсолютный, эталонов, мониторов. Кроме перечисленных, в работе предложено использовать сравнительный метод, являющийся компиляцией особенностей метода эталонов и мониторов и обеспечивающий наиболее высокое качество и производительность исследований. Согласно предложенному методу образцы сравнения, содержащие заданный набор определяемых элементов, облучаются совместно с пробой в одно время и в одном месте (иногда в качестве внутреннего монитора). Однако сам образец сравнения представляет собой самостоятельный объект, отделяемый от пробы. Определение активности компонент пробы проводится в ходе двух измерений: первое – измерение пробы, второе – измерение пробы совместно с образцом сравнения. Геометрия измерений выбирается таким образом, чтобы обеспечить ее идентичность условиям облучения.

Анализ облученного материала может быть выполнен с помощью одного из методов, обеспечивающих выполнение требований к качеству его проведения: радиометрическим, сцинтилляционным или гамма-спектрометрическим, а в случае делящихся материалов – по запаздывающим нейтронам, трекам деления и содержанию продуктов распада.

Важной особенностью нейтронно-активационного анализа благородных металлов и делящихся материалов, является разнообразие геометрических параметров проб и индикаторов нейтронного потока. В качестве индикаторов используются, как правило, фольги, и проволока. Для них характерна дисковая и линейная геометрия измерений. Пробы исследуемого материала, чаще всего имеют цилиндрическую форму. Геометрия сосуда Маринелли используется для предварительного анализа состава радионуклидов в пробе до облучения. Для качественного проведения анализов проб различной геометрии необходимо иметь образцовые материалы, повторяющие их геометрические и физические параметры и имеющие схожие радиационные свойства. Изготовление таких образцовых материалов и их аттестация являются длительным и трудоемким процессом, отнимающим значительные средства и время. Чтобы избежать этого, можно воспользоваться полуэмпирическим методом калибровки измерительной аппаратуры. Полуэмпирическая расчетная модель основывается на следующих двух основных принципах: приведении объемного детектора к точечному путем экспериментального определения его эффективного центра детектирования; приведение исследуемого образца к точечной геометрии, имеющей идентичную активность. Изменение геометрии источника компенсируется путем введения корректирующего геометрического параметра

, учитывающего эквивалентность такого преобразования. Расчетные соотношения для определения
источников излучения различной геометрии получены в работе.

Так как пробы геологических и экологических материалов имеют сложный элементный состав, то оценка пределов обнаружения в них благородных металлов и делящихся изотопов может быть выполнена только с учетом фонового излучения.

Для анализа содержания благородных металлов в пробах в работе предложено использовать метод инструментального НАА. Инструментальный анализ выполняется с помощью гамма-спектометрических измерений продуктов активации. На основании анализа нейтронно-физических характеристик разработан перечень изотопов благородных металлов, наиболее пригодных для НАА. Показано, что благородные металлы в основном не отличаются благоприятными характеристиками для его выполнения (за исключением золота и иридия). Другой важной особенностью является то, что НАА благородных металлов, за исключением родия, удобно проводить по сравнительно долгоживущим изотопам (период полураспада от 2,7 до 74,4 суток). Таким образом, в большинстве случаев, для выполнения анализов содержания благородных металлов не требуется создание специальных устройств быстрой доставки проб (пневмопочты и т.п.),

Сложности анализа делящихся материалов заключаются в том, что в пробах они находятся в смеси друг с другом, а в процессе деления образуют продукты распада одинаковые по изотопному составу и близкие по вероятности образования. Кроме того, процесс спонтанного деления тяжелых ядер в природе приводит к образованию дополнительного количества продуктов распада, что также увеличивает порог обнаружения делящихся нуклидов в пробах.

Наиболее важными характеристиками источника облучения являются поток нейтронов и потенциальная производительность облучения проб. При этом нейтронные характеристики источника имеют ключевое значение, так как определяют чувствительность анализов. Поэтому в качестве источника облучения в работе был выбран реактор ИГР, имеющий одновременно наибольший, среди рассмотренных ИРСД, флюенс нейтронов за время облучения и объем экспериментальных каналов. Наиболее близким к нему по перечисленным параметрам является реактор ИГРИК.

Для любых материалов, используемых в процессе облучения проб в ИРСД, существуют ограничения, характерные только для реакторов этого типа. Ограничения определяются двумя факторами: радиационным разогревом материалов в реакторе и повышенной радиационной безопасностью при обращении с ними после облучения.

При выполнении оценки степени радиационного разогрева были выбраны материалы, имеющие широкое применение в ядерных технологиях и потенциально пригодные для проведения НАА с помощью ИРСД. Возможная степень их радиационного разогрева в реакторе была оценена расчетным путем. Исходя из результатов расчетов повышения температуры материалов, был сделан вывод, что золото, кадмий и полиэтилен могут иметь существенные ограничения при их облучении в ИРСД, вызванные возможностью расплавления. Справедливость такого вывода была подтверждена в экспериментальных работах. Размягчение и плавление полиэтилена в реакторе ИГР наблюдается при интегральном флюенсе нейтронов (0,6−0,7)·1016 см-2. При отсутствии принудительного охлаждения и полном интеграле мощности реактора ИГР происходит не только плавление, но и частичное испарение индикаторов, выполненных на основе ядерно-чистого золота. По этой причине для нейтронно-физических исследований на реакторе ИГР в качестве нейтронных индикаторов были использованы такие материалы как медь, цинк и нихром, которые в силу своих ядерно-физических свойств гораздо менее подвержены радиационному разогреву. Кроме того, при флюенсе нейтронов порядка 0,5·1016 см-2 и более происходит плавление кадмиевой фольги. Таким образом, в ИРСД имеются ограничения по использованию метода “кадмиевой разности” для определения активации проб по трем группам нейтронов (тепловой, эпитепловой и быстрой).