Смекни!
smekni.com

Стадии жизненного цикла и оценка их влияния на уровень загрязнения окружающей природной среды (стр. 4 из 6)

Если ЖВ распределить на поверхности Земли ровным слоем, ее толщина сложит всего 2 см. При такой незначительной массе организмы осуществляют свою планетарную роль за счет очень быстрого размножения, то есть очень энергичного круговорота веществ, связанного с этим размножением.

Масса ЖВ, которая отвечает данному моменту времени, с трудом сравнивающая с тем грандиозным ее количеством, которое производило свою работу в течение сотен миллионов лет существования организмов. Если посчитать всю массу ЖР, образованной за это время биосферой, она окажется ровной 2,4*1020т. Это в 12 раз превышает массу земной коры.

На земной поверхности нет химической силы, более постоянно действующей, а потому и более могучей за своими конечными последствиями, чем живые организмы, взятые в целом. Глины, известняки, доломиты, бурый железняк, бокситы - это все породы органического происхождения. В конечном итоге, свойства естественных вод, соленость Мирового океана и газовый состав атмосферы определяются жизнедеятельностью существ, планета которых населяющей.

Рассмотрим влияние средообразующие функции организмов на содержимое кислорода и углекислого газа в атмосфере. Напомним, что повышение концентрации СО2 в атмосфере вызывает "парниковый эффект" и способствует потеплению климата. Свободный кислород выделяется при фотосинтезе. Впервые на Земле массовое развитие фотосинтезирующих организмов - сине-зеленых водорослей - имело место 2,5 млрд. лет назад. Благодаря этому в атмосфере появился кислород, что дало импульс быстрому развитию животных. Однако интенсивный фотосинтез сопровождался усиленным употреблением СО2 и уменьшением его содержимому в атмосфере. Это привело к ослаблению "парникового эффекта", резкому похолодание и первому в истории планеты обледенел.

В наши дни накопление в атмосфере углекислого газа от сжигания углеводородного топлива рассматривается как тревожная тенденция, которая ведет к потеплению климата, таяния ледников и угрожает повышением уровня Мирового океана больше чем на 100 м. В связи с этим следует заметил функцию увлечения и захоронения избыточной углекислоты морскими организмами путем переводу ее в соединения углекислого кальция, а также путем образования биомассы ЖВ на сущих и в океане. Значит, чем больше зеленые, тем более поглощение СО2.

Чистота морских вод - во многом результат фильтрации, которая осуществляется разнообразными организмами, но особенно зоопланктоном. Большинство из этих организмов добивает еду, отцеживая из воды мелкие частицы. Работа их настолько интенсивна, что весь океан очищается от примесей за 4 года. Байкал исключительной чистоте своих вод во многом обязан веслоногому рачку, который за год трижды процеживает его воду.

Действие средообразующие функции живого вещества на примере озера Вашингтон.

С 1963 года, с момента перепускания стоков мимо озера в океан резко уменьшается концентрация фосфора и количество биомассы фитопланктона (водоросли, хлорофилл). Концентрация азота в воде изменилась незначительно. Поэтому причиной уменьшения массы фитопланктону является уменьшение поступления Р в водоем. Вода стала более чистой.

Очистка стоков привела к резкому повышению качества воды в озере сравнительно с предыдущими состояниями. Это совпало с появлением в воде дафнии - фильтрующих организмов, которые поглощают небольшую зелень и таким образом очищают воду. С 1976 года резко выросли количество дафнии (на 12%) на протяжении года и держалась на этом уровне. Одновременно дафнии являются кормом для рыб, потому в озере появилась рыба. Это яркий пример возобновления функционирования экосистемы в результате действия средообразующие функции живого вещества.

2. Задача

Рассчитать и сделать анализ материального и энергетического балансов производства нитробензола по технологии представленной на рисунке. Оценить масштаб антропогенной нагрузки на окружающую среду (рис. 4).


Рис. 4 - Схема процесса получения нитробензола

Реакция получения нитробензола (С6H5NO2) протекает в присутствии серной кислоты (H2SO4) и избытке бензола (С6Н6) из расчета 1 кмоль бензола на 0,95 кмоль азотной кислоты (HNO3):

.

Азотная и серная кислоты поступают в виде растворов с массовыми концентрациями 2 и 3. Концентрация серной кислоты в течение процесса получения нитробензола уменьшается до величины 6. Вода, образующаяся в ходе реакции и поступающая с раствором азотной кислоты, уменьшает концентрацию серной кислоты в растворе.

Введение исходных продуктов в систему и выведение из нее продуктов реакции осуществляется при температуре окружающей среды t1. Реакция получения нитробензола протекает при температуре t2 > t1 с эффективностью, которая определяется выходом реакции.

В процессе смешения реагентов происходит выделение тепловой энергии при взаимодействии бензола с азотной кислотой и в результате разбавления серной кислоты реакционной водой и водой, поступающей с исходными реагентами. Количество выделяемой тепловой энергии определяется соответственно удельным тепловым эффектом нитрования бензола и (q1) и удельной теплотой разбавления серной кислоты (q2). Потери тепловой энергии нормируются коэффициентом тепловых потерь, который определяет долю тепла, теряемую от общего входного потока тепловой энергии.

При расчете принимаются следующие исходные данные:

– масса С6Н6 М1 = 2,5 кг;
– удельная теплоемкость С6Н6 С1 = 1,72 кДж/(кг · °С);
– удельная теплоемкость НNO3 С2 = 2,51 кДж/(кг · °С);
– удельная теплоемкость H2SO4 С3 = 1,42 кДж/(кг · °С);
– концентрация раствора HNO3 0,73 (масс. доли);
– концентрация раствора Н2SO4 0,95 (масс. доли);
– концентрация отработанной Н2SO4 0,75 (масс. доли);
– выход реакции 0,75;
– температура окружающей среды t1 = 20 °С;
– температура реагирующей смеси t2 = 45 °С;
– удельный тепловой эффект реакции q1 = 153 кДж/моль;
– коэффициент тепловых потерь 0,15.

Решение

Материальный баланс. На основании закона сохранения вещества (массы) формируется материальный баланс производства нитробензола, который устанавливает связь между входными и выходными потоками вещества:

,(1.4)

Где Мвх - масса входного потока вещества;

Мвых - масса выходного потока вещества.


Рис. 5 - Схема материальных потоков процесса получения нитробензола: 1 - зона входных потоков вещества; 2 - зона выходных потоков вещества

Для расчетного анализа материальных потоков необходимо изучить упрощенную схему производства нитробензола. На ее основе составить подробную схему материальных потоков и подобрать не достающие исходные данные. Технологическую схему, можно представить как одну технологическую единицу, в которой структурные составляющие не различаются, и условно распределить в ней потоки вещества, так, как это сделано на рисунке.

Входной поток вещества представляют как сумму составляющих его компонентов по формуле

Мвы123= 2,5+2,6+4,2=9,3 кг, (1.5)

где М1-масса бензола С6Н6 (известна по условию), кг;

М2-масса раствора азотной кислоты HNO3, кг;

М3-масса раствора серной кислоты H2SO4, кг.

По известному из условия оптимальному мольному соот­ношению исходных веществ определяем количество вещества HNO3 требуемого для реакции:

n2 =30.1 моль,

где n1-количество вещества С6Н6,

-мольная масса бензола, кг/кмоль, 78 кг/кмоль.

С другой стороны количество молей HNO3 определяется аналогично бензолу:

(1.6)

Где М2 HNO3-масса HNO3, кг;

мольная масса HNO3, кг/кмоль, 63 кг/кмоль.

Отсюда

(1.7)

Так как НNO3 поступает в реактор-смеситель в виде раствора, то окончательно масса раствора HNO3 (М2) равна:

(1.8)

Где массовая доля HNO3 в водном растворе по условию.

Необходимое количество раствора Н2SO4, поступающего в реактор­–смеситель, будет рассчитываться с учетом количества воды, образовавшейся в реакторе-смесителе.

Количество воды (M2 Н2О), поступившей в реактор вместе с раствором азотной кислоты,

(1.9)

Количество реакционной воды (Mр Н2О) находится из уравнения реакции по исходному веществу, находящемуся в недостатке (НNO3):

(1.10)