Смекни!
smekni.com

Новая высокоэффективная технология дезактивации радиоактивных солевых растворов и сточных вод с извлечением ценных компонентов и их возвратом в технологический цикл (стр. 3 из 4)

N=(lnСисх-lnСкон)/(lnKd+ln). (1)

Обработка раствора фосфатом титана или его модификациями при рН менее 4 резко снижает эффективность сорбции, уменьшает коэффициенты распределения радионуклидов, так как +-ионы составляют конкуренцию при катионном замещении в твердой фазе. Обработка в режиме противотока при значениях рН не менее 4 и числе стадий обработки, определяемом согласно соотношению (1), обеспечивает наиболее полный захват радионуклидов по гамма- и бета-активности в твердую фазу и исключает образование растворимых твердых осадков. При очистке ЖРО с высоким солевым фоном происходит замещение катионами металлов протонов сорбента и переход последних в раствор, что в значительной степени снижает рН раствора. Поэтому в процессе сорбции возникает необходимость корректирования величины рН. Корректирование осуществляют введением щелочного компонента. Наиболее дешевым и удобным является использование соды, не меняющей, как правило, солевой состав очищаемого раствора. Для очистки от фосфат-ионов дезактивированного раствора последний обрабатывают гелем гидроксида титана. Перед захоронением отработанного сорбента целесообразна его термическая обработка, которая обеспечивает жесткую фиксацию сорбированных катионов, не переходящих в дальнейшем как в слабокислые, так и слабощелочные растворы, что создает гарантии надежного захоронения радиоактивных отходов после стеклования, битумирования или бетонирования. Во всех примерах число стадий определяют исходя из требуемой степени очистки от радионуклидов по гамма- и бета-активности, согласно соотношению N= (lnСисх-lnСкон)/(lnKd+ln), где Скон для гамма-активности принято равным 80 Бк/л, а Скон для бета-активности принято равным 35 Бк/л. При этом в качестве рабочего числа стадий выбирают число стадий, обеспечивающих требуемую степень очистки и по гамма- и по бета-активности, а несколько последовательных стадий объединяют в цикл. В режиме противотока (пример 6) процесс ведут с использованием в последующем цикле сорбента предыдущего цикла.


Глава 2. Новая высокоэффективная технология дезактивации радиоактивных солевых растворов и сточных вод с извлечением ценных компонентов и их возвратом в технологический цикл

При этом наилучшие технологические показатели — как по степени дезактивации (> 99,9 %), так и по степени концентрирования радионуклидов были получены при обработке растворов СОФ при 80 — 90 °С раствором гидроксида натрия (80 — 100 г/дм3) до рН =11-5- 13 в течение 1 — 2 ч. Однако, в связи с довольно высокой исходной концентрацией радионуклидов в растворах от СОФ достичь требуемой степени их дезактивации до установленных норм (< 6 Б к/кг) ни в одном из опытов за одну стадию не удалось. Подробное изучение особенностей и закономерностей дезактивации растворов-фильтратов после первой стадии дезактивации с Ауа = 200 - 800 кБк/кг и сопоставление эффективности различных методов дало возможность предложить новую — рациональную и выкоэффективную технологию совместной дезактивации солевых растворов от СОФ и ЦОВ. При разработке этой технологии и выборе условий второй стадии дезактивации растворов СОФ руководствовались следующими исходными данными [2].

Исходная удельная активность растворов СОФ примерно равна 100 250 кБк/кг. После первой стадии дезактивации растворов СОФ. их нейтрализации раствором NaOH до рН = 11,5 ^ 12,5 Awфильтратов обычно составляет 300 — 500 Бк/кг, что весьма близко к исходной удельной активности ЦОВ.

Как было показано ранее, ЦОВ имеют удельную активность Awдо 1000 Бк/кг и содержат преимущественно в форме хлоридов железо, алюминий, торий, редкоземельные элементы (РЗЭ) и оксихлориды Nb, Та и Ti [3]. Ионы этих металлов при обработке ЦОВ раствором NaOH образуют осадки оксигидратов металлов, являющихся весьма эффективными коллекторами для радионуклидов ряда Th-232 и U-238 [4].

При переработке 9000 — 12000 т лопаритовых концентратов ежегодно образуется 1500 м3растворов от "гидроразмыва" СОФ и 30000 м3 ЦОВ (рН = 1,5 + 5,0) [2]. Иначе говоря, соотношение растворов СОФ и ЦОВ составляет 1:20, а фильтратов после первой стадии дезактивации (нейтрализации) растворов СОФ и ЦОВ - " 1:10.

Это означает, что при смешивании, точнее — при объединении ЦОВ (4д = 500±250 Бк/кг) и фильтратов после первой стадии дезактивации растворов СОФ удельная активность объ-единенных растворов будет изменяться (увеличится или уменьшится) по сравнению с ад ЦОВ незначительно. Количественно изменения удельной активности ДЛУД будут находиться в пределах обычных колебаний значений удельной активности ЦОВ, поступающих в отделение дезактивации и нейтрализации.

Исследования показывают, что при удельных активностях ЦОВ (200 - 800 Бк/кг) и фильтратов после первой стадии дезактивации растворов СОФ (300 — 500 Бк/кг) удельная активность объединенных растворов может составить 220 — 770 Бк/кг, что мало отличается от удельной активности исходных ЦОВ.

В связи с этим объединение фильтратов после первой стадии дезактивации растворов СОФ с исходными ЦОВ не должно оказывать отрицательного влияния на эффективность дезактивации путем обработки растворами NaOH до рН = 11 -н 13.

Величина рН фильтратов после нейтрализации растворов СОФ раствором NaOH составляет 11,5 — 12,5, поэтому при смешении (объединении) этих фильтратов с ЦОВ (рН = 1,5 5,0) следует ожидать повышения величины рН объединенного раствора и, как следствие, сокращения общего расхода гидроксида натрия на дезактивацию, т.е. нейтрализацию до рН = 11 + 12.

Совокупность вышеперечисленных предпосылок послужила основой для создания новой усовершенствованной технологии, обеспечивающей совместную переработку и дезактивацию растворов СОФ и ЦОВ (см. рисунок). Для разработанной технологической схемы были проведены исследования по уточнению режимов и параметров процесса и определению эффективности дезактивации при различных соотношениях ЦОВ и фильтратов от первой стадии переработки растворов СОФ.

При проведении опытов были использованы отобранные в течение 5 сут и усредненные образцы цеховых обмывочных вод (ад = 730 Бк/кг, рН = 1,5) растворов от "гидроразмыва" расплава СОФ с ад = 130 кБк/кг и рН = 1,4. Дезактивацию раство-ров СОФ на первой стадии вели путем обработки исходного раствора/пульпы СОФ при непрерывном перемешивании раствором (120 г/дм3) гидроксида натрия до рН = 12,0+0,2. Образующуюся оксигидратную пульпу нагревали до температуры 85±5 °С, выдерживали, непрерывно перемешивая в течение 30 мин, и фильтровали. Расход NaOH составил 1,2 дм3/дм3, масса высушенного радиоактивного осадка — 0,2 кг/дм3, степень дезактивации — 99,6 %, а остаточная удельная активность фильтрата — 560 Бк/кг. Фильтрат для окончательной дезактивации смешивали с ЦОВ в следующих соотношениях: 1:15, 1:20, 1:25.

Полученные объединенные растворы после измерения величины рН и ад обрабатывали при перемешивании раствором NaOH (120 г/дм3) до рН = 12,0±0,2 и оксигидратную пульпу нагревали до температуры 85±5 °С, выдерживали при перемешивании 30 мин и фильтровали. Радиоактивный осадок отделяли от дезактивированного раствора, высушивали и взвешивали (см. таблицу).

Проведенные исследования полностью подтвердили правильность выбранной концепции совместной переработки и дезактивации цеховых обмывочных вод и солевых растворов, образующихся при сливе отрабо-тайных расплавов СОФ в воду. Полученные данные в совокупности с ранее выполненным анализом системы образования жидких и твердых РАО [2] и результатами опытно-промышленных испытаний усовершенствованной технологии дезактивации цеховых обмывочных вод [3] позволяют сделать следующие выводы:

• разработанная технология обеспечивает дезактивацию до установленных норм, как растворов СОФ, так и цеховых обмывочных вод;

• масса вторичных РАО, подлежащих захоронению в ХСО, т.е. масса оксигидратных осадков (оксигидраты Fe, Al, Nb, Та, Ti, РЗЭ, Th), полученных на первой стадии дезактивации растворов СОФ по предлагаемой технологии, в 2 — 3 раза меньше, чем по существующей технологии, основанной на обработке растворов СОФ ВаС12, H2S04 и известковым молоком;

• масса оксигидратных осадков от совместной дезактивации цеховых обмывочных вод и фильтратов после первой стадии дезактивации растворов СОФ практически совпадает с массой осадков, получаемых от нейтрализации и дезактивации только цеховых обмывочных вод. Полученные в результате такой совместной дезактивации оксигидратные осадки после сушки (100±5 "С, 2 ч) имели следующий состав, % по массе: 1,2 Та205; 11,1 Nb205; 28,3 ТЮ2; 17,7 сумма оксидов РЗЭ, 18,7 Fe203; 5,8 А120,; 2,2 Th02; 2,3 Si02, что практически совпадает с результатами, полученными в ходе проведения опытно-промышленных испытаний усовершенствованной технологии обезвреживания, нейтрализации и дезактивации цеховых обмывочных вод [3]. По содержанию ценных компонентов (Nb, Та, Ti, РЗЭ) эти осадки близки к составу лопаритовых концентратов, а удельная активность этих осадков (50 — 100 кБк/кг) ниже, чем удельная активность исходного лопаритового концентрата (220 кБк/кг). Поэтому эти осадки целесообразно возвращать в технологический процесс, а не вывозить в ХСО, т.е. их необходимо направлять вотделение хлорирования для последующей сушки, прокалки и приготовления шихты совместно с лопаритовым концентратом для хлорирования и до-извлечения соединений Nb, Та, Ti и РЗЭ;