Смекни!
smekni.com

Электромагнитное загрязнение окружающей среды от передающих радиотехнических объектов на территории г. Красноярска (стр. 2 из 4)

Несмотря на большое число публикаций, посвященных изучению последствий воздействия ЭМП на биообъекты, до сих пор нет единого мнения о механизмах воздействия ЭМИ на живой организм. Только с помощью экспериментальных и клинических исследований можно оценить характер воздействия ЭМИ на организм человека.

Взаимодействие внешних ЭМП с биологическими объектами осуществляется путем наведения внутренних полей и электрических токов, величина и распределение которых в теле человека и животных зависит от целого ряда параметров, таких как размер, форма, анатомическое строение тела, электрические и магнитные свойства тканей(электрическая/магнитная проницаемость и электрическая/магнитная проводимость), ориентация объекта относительно поляризации тела, а так же от характеристик ЭМП (частота, интенсивность, модуляция и др.). Поглощение и распределение поглощенной энергии внутри тела существенно зависит так же от формы и размеров облучающего объекта, от соотношения этих размеров с длиной волны излучения. С этих позиций в спектре ЭМИ РЧ можно выделить три области: ЭМП с частотой до 30МГц, ЭМП с частотой более 10ГГц и ЭМП с частотой 30МГц – 10ГГц. Для первой области характерно быстрое падение величины поглощения с уменьшением частоты (приблизительно пропорционально квадрату частоты). Отличительной особенностью второй является очень быстрое затухание энергии ЭМИ при проникновении энергии внутрь ткани: практически вся энергия поглощается в поверхностных слоях биоструктур. Для третьей, промежуточной по частоте области, характерно наличие ряда максимумов поглощения, при которых тело как бы втягивает в себя поле и поглощает энергии больше, чем приходится на его поперечное сечение. В этом случае резко проявляются интерференционные явления, приводящие к возникновению локальных максимумов поглощения, так называемых "горячих пятен". Для человека условия возникновения локальных максимумов поглощения в голове имеют место на частотах 750-2500МГц, а максимум, обусловленный резонансом с общим размером тела, лежит в диапазоне частот 50-300МГц [8].

Организм животных и человека весьма чувствителен к воздействию ЭМИ РЧ. Биологическому действию ЭМИ посвящены тысячи работ отечественных и зарубежных авторов. Поскольку подробное рассмотрение не представляется возможным, основное внимание будет уделено установленным закономерностям биологического действия фактора.

Наиболее чувствительна к воздействию ЭМИ нервная система. Электроэнцефалографическими методами выявлены нарушения в собственных электрических потенциалах организма при его взаимодействии с внешними ЭМП. Практически все диапазоны ЭМИ оказывают дезактивирующее влияние на электрические процессы в коре и подкорковых образованиях головного мозга. Функционально это проявляется в изменениях простой двигательной реакции порога обонятельной чувствительности, памяти и внимания, соотношении между процессами возбуждения и торможения в центральной нервной системе (ЦНС), в замедлении выборки сложных динамических стереотипов. Следствием указанных отклонений на уровне целостного организма являются повышенная утомляемость, головные боли, расстройство памяти и сна, раздражительность. По мнению ряда исследователей, механизм действия ЭМП различной частоты на организм представляется как результат опосредованного действия через ЦНС, но также возможно непосредственное влияние на его биохимические и биоэлектрические процессы в тканях и органах [9]. Значительно выражено гонадо- и эмбриотропное действие ЭМИ. Критериями оценки функциональных и патологических сдвигов со стороны производящей системы служат обычно морфологические изменения (дегенерация, пикноз клеточных элементов сперматогенного эпителия, изменения в соотношении клеточных форм, цитохимические сдвиги), гормональные нарушения эстральной и сперматогенной функции. Общее, что показывают многие исследования при воздействии ЭМИ на животных - это снижение репродуктивной способности самок и тератогенные изменения в потомстве, нарушение эстрального цикла, снижение функционального состояния сперматозоидов. Некоторые авторы даже считают, что функция производства женских половых гормонов более чувствительна к ЭМИ [10].

Некоторые авторы к числу критических систем относят кроветворную. Система кровообращения отвечает на воздействие ЭМИ фазовыми реакциями тонуса сосудов (повышение и понижение артериального давления) и сердечного ритма. Наблюдаемые эффекты можно рассматривать не только как результаты непосредственного действия ЭМИ на систему кровообращения, но и как результат нарушения ее регуляции. Накоплены сведения [11] о воздействии ЭМИ на такие процессы, как окислительное фосфорилирование, скорость транспорта ионов. Один из возможных механизмов действия магнитных полей - его ориентирующее действие на жидкие кристаллы клеточных мембран, что ведет к изменению их проницаемости. Биологическое действие ЭМИ зависит от длины волны (иди частоты) излучения, режима генерации (непрерывный, импульсный), условий воздействия на организм (постоянное, прерывистое; общее, местное; интенсивность; длительность). Отмечено, что биологическая активность ЭМИ убывает с уменьшением частоты излучения. В свете сказанного понятно, что наиболее активными являются сверхвысокие, крайне высокие и гипервысокие диапазоны радиочастот [8].


2. Расчетные методы оценки ЭМИ РЧ, ГИС и тематическое картографирование экологической информации

2.1 Представление знаний об окружающей среде в виде электронной карты, этапы создания тематического слоя

Геоинформационная система (ГИС) представляет собой автоматизированную аппаратно – программную систему, с помощью которой осуществляется сбор, обработка, хранение и отображение пространственно координированной информации. Основу ГИС составляют автоматические картографические системы, а главными источниками информации служат различные геоизображения [12].

Одним из наиболее важных направлений использования ГИС является развитие эколого-географического картографирования, которое служит информационной основой обеспечения решения региональных и локальных экологических проблем. Например, охрана природного потенциала территории, мониторинг здоровья населения, сохранение качества окружающей среды, поддержание и улучшение условий жизни и деятельности человека, экологически адаптированное природопользование и т. д. [13].

ГИС-технологии широко используются в комплексном картографировании, создают для него новые возможности и поднимают на более высокий технологический уровень. Компьютерные версии комплексных атласов представляют собой соединение картографических и геоинформационных методов организации и представления пространственной информации, что находит выражение в сочетании методов информатики в организации пространственного и тематического блоков баз данных и картографического метода построения изображения.

Атласное геоинформационное картографирование опирается на известные требования согласования карт: легенды одинаковой детальности, приуроченности к определенному масштабу и др. С проблемами согласования тесно связан и выбор базовых карт, которые служат каркасом для координирования и географической привязки данных, а также для последующего сопряженного анализа информации.

Формирование базы данных включает в себя такие основные этапы, как подготовка информационных слоев общегеографической основы и на ее базе подготовка информационных слоев тематического содержания карт Атласа. Такой подход является наиболее общим для комплексного атласного картографирования.

В настоящее время в разных регионах России создаются и разрабатываются проекты различных региональных атласов. Каждый из них наряду с общими моментами: географическое положение рассматриваемой территории, климатические характеристики, административно-территориальное деление, размещение населения, - имеет свои специфические особенности.

Примером региональных ГИС-карт являются электронные карты, раскрывающие с качественно различных сторон один рассматриваемый объект.

Очень актуальными являются ГИС – карты отдельных крупных городов, как правило, областных или краевых центров. Городская среда – сложная система, основным путем познания которой является изучение отдельных компонентов ее и связей между ними. Здесь проблема огромного количества тематически-различных данных опять решается с помощью ГИС.

Термином "электронная карта" обозначают набор тематических слоев, каждый из которых привносит пространственно-распределенную информацию по какой-либо определенной теме. Таким образом, если на слой границ некой территории может быть нанесен слой рек, затем слой населенных пунктов и т.д., пользователь имеет возможность, манипулируя тематическими слоями, визуально анализировать информацию более эффективно, чем анализируя просто колонки цифр. Именно графические изображения, наглядные графические образы всегда были и останутся для людей одними из главных средств познания окружающего мира и организации полученного знания, необходимым инструментом мышления и творческого начала [14].

Слои в электронной карте подразделяются на два вида: векторные и растровые.

Растровый слой представляет собой сплошное изображение, состоящее из различных по цвету пикселов, он не может содержать каких-либо объектов. Растровый слой используется в качестве подложки для цифрования, фона для большей наглядности векторного слоя или слоев, в фотограмметрии при преобразовании отсканированных аэрофотоснимков в векторный формат и т.д.