Смекни!
smekni.com

Конспект лекций по Экологии (стр. 24 из 30)

Система диоксид углерода - карбонат является одной из на­иболее сложных и важных для гидросферы. Она участвует в об­мене воздух - поверхностные слои воды, влияет на химию водной системы, биологическую структуру организмов и отложение осад­ка, содержащего углерод. От этой системы зависит рН среды, что непосредственно влияет на некоторые химические равновесия в данной локальной системе, особенно в отношении ионов, образую­щих комплексы. Она непосредственно влияет на биологический цикл организмов, в которых углерод используется в процессах раз­вития, гибели и разложения.

В настоящее время принято общее содержание СО2 в гидро­сфере, равное примерно 4·10-3 моль/л, из них более 80% в форме НСО3-. Распределение диоксида углерода неравномерно и частично зависит от био­логической активности в данном районе. Подобно кислороду, со­держание СО2 в поверхностных слоях воды является функцией его содержания в атмосфере и парциального давления. Однако схемы распределения диоксида углерода и кислорода сильно от­личаются друг от друга: наблюдается единая тенденция, к повышению содержания уг­лерода по мере увеличения глубины вследствие оседания продук­тов распада погибших организмов из биологически более богато­го поверхностного слоя воды.

Усваиваемый углерод является существенной частью питательных веществ и имеет первостепенное значение во всей экологической структуре гидросферы и локализованных районов в особен­ности. Диоксид углерода играет основную роль в процессе фото­синтеза, и его концентрация, по-видимому, коррелирует с осве­щенностью или поступлением энергии для таких районов, где ре­акция фотосинтеза не подавляется другими физико-химическими процессами. Однако высокое содержание СО2 является лимитирующим фактором для животных, так как оно сопровождается низким содержанием кислорода. Например, при слишком высоком содержании свободного углекислого газа в воде погибают многие рыбы.

Кислотность - концентрация ( активность) ионов водорода - тесно связана с карбонатной системой. Характеризуется величиной рН ( рН = -lg [ H+] ). Величина рН изменяется в диапазоне 0 £ рН £ 14; при рН = 7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. Кислотность может служить индикатором скорости общего метаболизма сообщества. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала.

Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, причем около 80% составляют карбонаты. Содержание же минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией.

Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения.

Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атмосферу. В самой глубокой части океана давление достигает 1000 атмосфер. Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Эдафические (почвенные) факторы.

Почвой называют слой вещества, лежащий поверх горных пород земной коры. Русский ученый Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. Советский академик почвовед Вильямс дал еще одно определение почвы - это рыхлый поверхностный горизонт суши, способный производить урожай растений. Рост растений зависит от содержания необходимых питательных веществ в почве и от ее структуры.

В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60% общего состава почвы), органическое вещество (до 10%), воздух (15-25%) и вода (25-30%).

Минеральный скелет почвы - это неорганический компонент, который образовался из материнской породы в результате ее выветривания.

Свыше 50% минерального состава почвы занимает кремнезем SiO2, от 1 до 25% приходится на глинозем Al2О3, от 1 до 10% - на оксиды железа Fe2О3, от 0,1 до 5% - на оксиды магния, калия, фосфора, кальция. Минеральные элементы, образующие вещество почвенного скелета, различны по размерам - от валунов и камней до песчаных крупинок - частиц диаметром 0,02¸2 мм, ила - 0,002¸0,02 мм и мельчайших частиц глины - менее 0,002 мм в диаметре. Их соотношение определяетструктуру почвы. Она имеет большое значение для сельского хозяйства. Глины и суглинки, содержащие примерно равное количество глины и песка, обычно пригодны для роста растений, так как содержат достаточно питательных веществ и способны удерживать влагу. Песчаные почвы быстрее дренируются и теряют питательные вещества из-за выщелачивания, но их выгоднее использовать для получения ранних урожаев, так как их поверхность высыхает весной быстрее, чем у глинистых почв, что приводит к лучшему прогреванию. С увеличением каменистости почвы уменьшается ее способность удерживать воду.

Органическое веществопочвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения - аморфное вещество, в котором уже невозможно распознать первоначальный материал - называется гумусом. В химическом плане это очень сложная смесь измен­чивого состава, образованная органическими моле­кулами различных типов; в основном гумус состоит из фенольных соединений, карбоновых кислот и сложных эфиров жирных кислот. Гумус, подобно глине, находится в коллоидном состоянии; отдель­ные частицы его прочно прилипают к глине и образуют глино-гумусовый комплекс. Так же как и глина, гумус обладает большой поверхностью частиц и высокой катионообменной способностью. Эта способность особенно важна для почв с низким содержанием глины. Анионы в гумусе - это карбок­сильные и фенольные группы. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества.

Одновременно с процессом гумификации жизненно важные элементы переходят из органических соединений в неорганические, например, азот- в ионы аммония NH4+, фосфор - в ортофосфат-ионы H2PO4-, сера - сульфат-ионы SO42-. Этот процесс называется минерализацией.

Почвенный воздух также как и почвенная вода, находится в порах между частицами почвы. Порозность ( объем пор) возрастает в ряду от глин к суглинкам и пескам. Между почвой и атмосферой происходит свободный газообмен, в результате чего воздух обеих сред имеет сходный состав. Обычно в воздухе почвы из-за дыхания населяющих ее организмов несколько меньше кислорода и больше углекислого газа, чем в атмосферном воздухе. Кислород необходим для корней растений, почвенных животных и организмов-редуцентов, разлагающих органическое вещество на неорганические составляющие. Если идет процесс заболачивания, то почвенный воздух вытесняется водой и условия становятся анаэробными. Почва постепенно становится кислой, так как анаэробные организмы продолжают вырабатывать углекислый газ. Почва, если она небогата основаниями, может стать чрезвычайно кислой, а это наряду с истощением запасов кислорода неблагоприятно воздействует на почвенные микроорганизмы. Длительные анаэробные условия ведут к отмиранию растений.

Почвенные частицы удерживают вокруг себя некоторое количество воды. Часть ее, называемая гравитационной водой может свободно просачиваться вниз через почву. Это ведет к выщелачиванию, т.е. к вымыванию из почвы различных минеральных веществ, в том числе азота. Гравитационная вода проходит до уровня грунтовых вод, глубина залегания которых колеблется в зависимости от количества выпадающих осадков.

Вода может также удерживаться вокруг отдельных коллоидных частиц в виде тонкой прочной связанной пленки. Эту воду называют гигроскопической. Она адсорбируется за счет водородных связей на поверхностях кварца и глины или на катионах, связанных с глинистыми минералами и гумусом. Эта вода наименее доступна для корней растений, и именно она последней удерживается в очень сухих почвах. Количество гигроскопической воды зависит от содержания в почве коллоидных частиц, поэтому в глинистых почвах ее намного больше - примерно 15% веса почвы, чем в песчанистых - примерно 0,5%. По мере того, как накапливаются слои воды вокруг почвенных частиц, она начинает заполнять сначала узкие поры между этими частицами. а затем распространяется во все более широкие поры. Гигроскопическая вода постепенно переходит в капиллярную, которая удерживается вокруг почвенных частиц силами поверхностного натяжения. Капиллярная вода может подниматься по узким порам и канальцам от уровня грунтовых вод. Растения легко поглощают капиллярную воду, которая играет наибольшую роль в регулярном снабжении их водой. В отличие от гигроскопической эта вода легко испаряется. Тонкоструктурные почвы, например глины, удерживают больше капиллярной воды, чем грубоструктурные, такие, как пески.