Смекни!
smekni.com

Конспект лекций по Экологии (стр. 7 из 30)

Таким образом, важнейшая термодинамическая характеристика организмов, экосистем и биосферы в целом - способность создавать и поддерживать высокую степень внутренней упорядоченности, то есть неуравновешенное состояние с низкой энтропией (с окружающей средой, но неустойчивое равновесие для самого индивида). Для поддержания внутренней упорядоченности в системе, находящейся при температуре выше абсолютного нуля, когда существует тепловое движение атомов и молекул, необходима постоянная работа по откачиванию "неупорядоченности". Эта работа предполагает постоянно действующий источник энергии и наличие хорошо развитых "диссипативных структур" у самой системы. Низкая энтропия достигается постоянным и эффективным рассеянием легко используемой концентрированной энергии (например, энергии света, горючего, пищи) и превращением ее в энергию, используемую с трудом (например, в тепловую). Дыхание высокоупорядоченной биомассы можно рассматривать как диссипативную структуру экосистемы. Это затрата энергии на поддержание жизнедеятельности.

Итак, экосистемы и организмы представляют собой открытые неравновесные термодинамические системы, постоянно обменивающиеся с окружающей средой энергией и веществом, уменьшая этим энтропию внутри себя, но увеличивая энтропию вовне в согласии с законами термодинамики.

Энергетические характеристики среды.

Для описания "поведения" энергии в экосистемах подходит понятие "поток энергии", поскольку в отличие от циклического движения веществ превращения энергии идут в одном направлении. Энергия, однажды использованная каким-либо организмом, превращается в тепло и утрачивается для экосистемы. Энергия может накапливаться, сберегаться (т.е. преобразовываться в более эффективные формы) и передаваться из одной части системы в другую, но она не может быть снова пущена в дело, как вода и минеральные вещества. Живые замкнутые термодинамические системы невозможны. Каждый живой компонент, будь это организм или экосистема, должен получить от своей среды на входе постоянный приток энергии.

Основной источник практически всей энергии на Земле - Солнце. На биосферу из космоса падает солнечный свет с энергией 2 кал·см-2·мин-1. Проходя через атмосферу, излучение экспоненциально ослабляется атмосферными газами и пылью и в ясный летний полдень до поверхности Земли может дойти не более 67 % его энергии. Степень этого ослабления зависит от длины волны (частоты) света. Ультрафиолетовое излучение с длиной волны менее 300 нм, почти не проходит через озоновый слой, имеющийся в атмосфере на высоте около 25 км, и это очень удачно, поскольку такое излучение летально для незащищенной протоплазмы. Излучение в оптической области (видимый свет) ослабляется равномерно, а инфракрасное излучение поглощается в атмосфере неодинаково в зависимости от длины волны. Лучистая энергия, достигающая земной поверхности в ясный день, состоит примерно на 10 % из ультрафиолетового излучения, на 45 % - из видимого света и на 45 % - из инфракрасного. Меньше всего при прохождении через плотные облака и воду ослабляется видимый свет. Следовательно, фотосинтез, нуждающийся именно в видимом свате, может идти и в пасмурные дни, и под слоем чистой воды некоторой толщины (10-20 м). Поступление солнечной энергии к автотрофному слою экосистемы за день обычно варьирует от 100 до 800 кал·см-2, в среднем составляя около 300 - 400 кал·см-2 (3000 - 4000 ккал·м-2) или 1,1 - 1,5 млн. ккал·м-2·год-1 Растительность сильно поглощает синие и красные лучи, а также дальнее инфракрасное излучение; зеленый свет поглощается не так сильно (мы видим в отраженном свете, поэтому растительность для нас преимущественно зеленых оттенков); ближнее инфракрасное излучение - очень слабо. Тенистая прохлада создается в лесу благодаря тому, что листва поглощает много видимого и дальнего инфракрасного излучения. Синий и красный свет (400-500 и 600-700 нм соответственно) поглощаются особенно сильно хлорофиллом, а энергия дальнего инфракрасного излучения - водой, содержащейся в листьях, и окружающими их водяными парами. Таким образом, зеленые растения эффективно поглощают синий и красный свет, наиболее важный для фотосинтеза. Как бы отбрасывая ближнее ИК-излучение, несущее основную часть солнечной тепловой энергии, листья наземных растений избегают опасного перегрева. Кроме того, листья охлаждаются за счет испарения, а водные растения, разумеется, охлаждаются водой.

Таблица 1.

Рассеяние энергии солнечного излучения ( в % от годового поступления в биосферу). (По Hulbert, 1971.)

%
Отражрается Прямо превращается в теплоИспарение, осадки Ветер, волны, теченияФотосинтез

30

46

23

0,2

0,8

Энергия приливов - около 0,0017% солнечной энергии.Тепло Земли - около 0,5% солнечной энергии.

Судьба солнечной энергии, поступающей в биосферу, кратко рассмотрена в табл. 1. Хотя всего лишь около 1 % энергии переходит в пищу и другую биомассу, те примерно 70 %, которые преобразуются в тепло, уходят на испарение, осадки, ветер и т.д., не теряются зря, т.к. эта энергия поддерживает температуру и приводит к действие системы погоды и круговорот воды, необходимые для жизни на Земле.

Другой энергетический компонент среды обитания - тепловое излучение. Оно исходит от всех поверхностей и тел, температура которых выше абсолютного нуля. Это не только почва, вода и растения, но и облака, излучающие вниз, на экосистемы, значительные количества тепловой энергии. Потоки длинноволнового излучения, разумеется, распространяются беспрестанно и во всех направлениях, а солнечный компонент (прямая солнечная радиация) имеет четкую направленность и поступает только днем. Следовательно, количество тепловой энергии, получаемой со всех сторон за сутки летом животным на открытом пространстве или листом растения, может в несколько раз превышать направленное прямо вниз излучение Солнца. Кроме того, тепловая энергия поглоща­ется биомассой полнее, чем солнечное излучение.

Условия существования организмов (температура, скорость испарения воды, движения воздуха и воды) определяются общим потоком излучения, но для продуктивности экосистемы и для круговорота биогенных элементов в ней важнее суммарное прямое солнечное излучение, попадающее на автотрофный ярус экосистемы, т.е. солнечная энергия, получаемая зелеными растениями за недели, месяцы, весь год. Этот приток первичной энергии приводит в действие все биологические системы. Итак, мы подошли к концепции продуктивности.

Лекция 4.

Энергия и продуктивность.

1. Концепция продуктивности.

2. Энергетическая классификация систем.

3. Концепция градиента от субсидии до стресса.

Концепция продуктивности

Первичная продуктивность экологической системы, сообщества или любой их части определяется как скорость, с которой лучистая энергия усваивается организмами-продуцентами (главным образом зелеными растениями) в процессе фотосинтеза и хемосинтеза, накапливаясь в форме органических веществ.

В процессе производства органического вещества следует выделить четыре последовательных уровня, или ступени.

1. Валовая первичная продуктивность - это общая скорость фотосинтеза, включая те органические вещества, которые за время измерений были израсходованы на дыхание ("валовый фотосинтез", "общая ассимиляция").

2. Чистая первичная продуктивность - скорость накопления органического вещества в растительных тканях за вычетом того органического вещества, которое использовалось при дыхании растений за изучаемый период ("наблюдаемый фотосинтез", "чистая ассимиляция").

3. Чистая продуктивность сообщества - скорость накопления органического вещества, не потребленного гетеротрофами (т.е. чистая первичная продукция минус потребление гетеротрофами) за учетный период.

4. Вторичная продуктивность - скорость накопления энергии на уровнях консументов.

Высокие скорости продуцирования наблюдаются в естественных и искусственных экосистемах там, где физические факторы благоприятны, и особенно при поступлении дополнительной энергии извне, уменьшающем собственные затраты на поддержание жизнедеятельности. Такая дополнительная энергия может поступать в разной форме: в тропическом дождевом лесу - в форме работы ветра и дождя, в эстуарии - в форме энергии прилива, на возделываемом поле - в форме энергии ископаемого топлива и работы, совершаемой человеком или животным. Оценивая продуктивность экосистемы, необходимо учитывать как утечки энергии, связанные со сбором урожая, загрязнением среды, неблагоприятными климатическими условиями и другими типами стрессовых воздействий, способствующих отведению энергии от процесса продукции, так и поступления энергии, которые увеличивают продуктивность, компенсируя потери тепла при дыхании (при "откачивании неупорядоченности") необходимые для поддержания биологической структуры.