Смекни!
smekni.com

Биология 10 класс Балан профили, академ (стр. 5 из 10)

Живій матерії притаманна подразливість, тобто здатність сприймати подразники зовнішнього та внутрішнього середовища і певним чином на них реагувати.

Для всіх біологічних систем характерна здатність до самовідтворення.

Організмам властиві ріст і розвиток.

Існування організмів тісно пов’язане зі збереженням спадкової інформації та її передачею нащадкам під час розмноження. Водночас живим істотам притаманна й мінливість – здатність набувати нових ознак протягом індивідуального розвитку.

Біологічні системи здатні до адаптацій – пристосувань до змін, які відбуваються в зовнішньому чи внутрішньому середовищах.

Розрізняють такі рівні організації живої матерії: молекулярний, клітинний, організмовий, популяційно-видовий, е косистемний, або біогеоценотичний, і біосферний.

1. Які хімічні елементи найпоширеніші в сполуках живих організмів?

2.

Чому біологічні системи належать до відкритих? 3. Що таке За пи тан ня для го меостаз? 4. Які ви знаєте рівні організації живої матерії? 5. Як са мо ко нт ро лю співвідносяться різні рівні організації живої матерії між собою? 6. Що слугує середовищем життя для біосфери?

Поміркуйте. 1. Чим можна пояснити наявність різних рівнів організації живої матерії? 2. Користуючись матеріалом параграфа, спробуйте сформулювати поняття «життя». Чи можна вважати його повним?

§ 3 . МЕТОДИ ДОСЛІДЖЕНЬ У БІОЛОГІЇ.

ЗНАЧЕННЯ ДОСЯГНЕНЬ БІОЛОГІЧНОЇ НАУКИ В ЖИТТІ ЛЮДИНИ І СУСПІЛЬСТВА

Пригадайте: за допомогою яких методів досліджують одноклітинні організми?

Основні методи біологічних досліджень. Живу матерію на різних рівнях організації досліджують також різними методами, основні з яких – порівняльн о-описовий, експериментальний, моніторинг і моделювання. Отримані результати обробляють за допомогою математично-статистичного аналізу.

За допомогою порівняльно-описового методу описують нові для науки види організмів, процеси чи явища. Його започаткував давньогрецький учений Арістотель. Однак часто замало просто описати новий вид організмів, процес, явище тощо. Щоб встановити своєрідність об’єкта досліджень, його необхідно порівняти з іншими подібними об’єктами, процесами чи явищами. Наприклад, відкриття нових для науки видів неможливе без аналізу їхньої подібності та відмінностей від близьких форм. Те саме с тосується органічних сполук, біохімічних процесів, будови та функцій клітин, тканин, організмів, екосистем тощо.

Для наукового дослідження будь-який біологічний об’єкт потрібно класифікувати, тобто визначити його належність до тієї чи іншої групи (наприклад, органічних речовин – до білків, ліпідів, вуглеводів чи нуклеїнових кислот тощо, живих істот – до відповідного виду, роду, родини і т. д.). Порівняння об’єктів дослідження можливе лише в межах певного рівня організації (наприклад, порівняння певної молекули з іншими молекулами, клітини – з іншими клітинами, виду – з іншими видами тощо).

Експериментальний метод полягає в тому, що дослідники активно втручаються в будову об’єктів досліджень, перебіг тих чи інших процесів, явищ і спостерігають за наслідками такого втручання. Експерименти бувають польові та лабораторні. Польові експерименти здійснюють у природних умовах: на експериментальних ділянках вивчають дію певних речовин на ріст рослин, випробовують заходи боротьби зі шкідниками, досліджують вплив господарської діяльності людини на природні екосистеми тощо. Лабораторні експерименти проводять у спеціально обладнаних приміщеннях (лабораторіях) (мал. 3.1). У таких дослідженнях часто використовують піддослідні організми, яких дослідники штучно розводять та утримують. Деякі лабораторні культури дали початок промисловим культурам, які використовують для одержання потрібних людині продуктів. Це один з напрямів досліджень у біотехнології (наприклад, використання дріжджів у хлібопекарській справі, виноробстві; бактерій і грибів – для отримання антибіотиків тощо).

Моніторинг – постійне стеження за перебігом певних процесів в окремих популяціях, екосистемах, біосфері в цілому чи за станом певних біологічних об’єктів. Його здійснюють здебільшого на популяційно-видовому, біогеоценотичному чи біосферному рівнях. Він дає змогу не тільки визначати стан певних об’єктів, а й прогнозувати можливі зміни, аналізувати їхні наслідки. Наприклад, зміни клімату на нашій планеті можливі в зв’язку з накопичен-

ням в атмосфері вуглекислого газу. Здійснюючи моніторинг його вмісту в атмосфері, можна припустити, як це впливатиме на зміну клімату нашої планети. Таким чином, моніторинг дає можливість своєчасно виявляти н егативні зміни у структурі та функціонуванні окремих популяцій, біогеоценозів чи біосфері в цілому і своєчасно розробляти заходи їх охорони.

Моделювання – метод дослідження та демонстрування структур, функцій, процесів за допомогою їхньої спрощеної імітації. Моделювання є обов’язковим етапом багатьох наукових досліджень, бо дає змогу вивчати об’єкти та процеси, які неможливо безпосередньо спостерігати чи відтворювати експериментально. Будь-яка модель неминуче спрощена. Вона не може виявити всю складність об’єктів, процесів чи явищ, які спостерігають у природі, а відображає лише їхні загальні риси чи ймовірний перебіг. За допомогою моделювання учені прогнозують можливі наслідки тих чи інших процесів або явищ, створюють певні ідеальні об’єкти чи явища й порівнюють з ними реальні. Наприклад, для дослідження багатьох неб езпечних хвороб людини створюють моделі цих процесів у піддослідних тварин.

Моделі можуть бути статичними та динамічними. Приклади статичних моделей вам не раз демонстрували на уроках біології, наприклад моделі будови квітки, головного мозку чи інших органів. Їх можна роздивлятися, не втручаючись в їхню структуру. А ось за допомогою акваріума (мал. 3.2) можна створити динамічну модель водної екосистеми. Змінюючи видовий склад організмів, х імічний склад води тощо, можна спостерігати за наслідками такого втручання.

Теоретичні основи математичних моделей біол огічних процесів і явищ розробляє математична біологія. Математична модель – це чисельне вираження парних зв’язків (у вигляді системи диференційних рівнянь) у межах певного об’єкта, процесу чи явища. Змінюючи числове значення о дного з показників, введених у модель, можна спостерігати, як змінюватимуться й інші, тобто як поводитиме себе дана система за певних умов. Наприклад, можна створити модель харчових

ма тематичної моделі. (Розв’яжіть задачу. Зайцю, для того щоб збільшити масу на 5 кг, треба з’їсти 50 кг рослин. Лисиця, якщо з’їсть зайця масою 5 кг, збільшить свою масу лише на 500 г. Визначте, яка частина їжі засвоюється, а яка – втрачається)

зв’язків у еко системі, опису ючи зв’язки між окремими видами: рослина – рослиноїдний вид, рослиноїдний вид – хижак і т. д. (мал. 3.3).

Математичне моделювання в біології сук упність математичних методів аналізу складних кількісних взаємозв’язків і закономірностей у б іологічних системах. Його здійснюють за допомогою комп’ютерної техніки, яка дає змогу зберігати величезні обсяги даних і швидко їх обробляти за д опомогою спеціальних програм. Математичне м оделювання дає змогу спостерігати за можливими варіантами перебігу подій, виділяти окремі зв’язки, комбінувати їх тощо. Передумовою створення правильної математичної моделі слугують накопичення даних спостережень або експериментів про певні явища чи процеси.

Математичну модель створюють у декілька етапів. Послідовно висувають робочу гіпотезу та формулюють запитання, відповіді на які повинна дати модель; розробляють відповідний математичний апарат; на його основі вираховують певні дані; порівнюють їх з результатами спостережень та експериментів, перевіряючи правильність моделі. У разі істотних розходжень результатів моделювання з реальними даними модель докорінно переробляють або відкидають, оскільки це свідчить про помилковість робочої гіпотези або неправильно розроблений математичний апарат.

Гіпотеза – науково обґрунтоване припущення, висунуте для пояснення того чи іншого факту, процесу або явища. Гіпотеза, підтверджена практикою, стає науковою теорією.

Математичні моделі, наприклад, дають змогу визначати, яку кількість особин п ромислових тварин можна вилучати з природних популяцій, щоб це не позначилося на їхній чисельності; прогнозувати масові розмноження шкідників, наслідки антропогенного впливу на окремі екосистеми та біосферу (наприклад, як збільшення концентрації вуглекислого газу в а тмосфері впливає на окремі групи організмів і клімат планети загалом) тощо.

Статистичний метод. Будь-який накопичений матеріал, отриманий у результаті спостережень, експериментів або моделювання, потребує статистичної (математичної) обробки. Маса зібраних фактів, не проаналізованих і не оброблених статистично, не дає можливості виявити весь об’єм інформації, встановити певні закономірності. Перед обробкою результатів дослідники визначають завдання, які потрібно вирішити, і залежно від цього обирають той чи інший метод математичної статистики. Математична обробка необхідна для визначення ступеня достовірності та правильного узагальнення отриманих результатів.