Смекни!
smekni.com

Chernobyl Essay Research Paper O n April (стр. 2 из 3)

Interests and Tradeoffs

Throughout the course of human events, many mammoth projects have been undertaken for the benefit of society. However, frequently the same projects that are highly beneficial to large populations when successful are incredibly detrimental to a localized group when they fail. Chernobyl is an outstanding example of this interesting–and tragic–phenomenon. Its construction initially benefited many thousands of people in the eastern section of the Soviet Union. Conversely, while its failure caused problems for many people, these problems were mainly focused on the relatively small population living in the countryside surrounding the reactor itself. This is an extreme example of the “Tragedy of the Commons”: those receiving power from Chernobyl on average–had much more to gain from Chernobyl’s construction than they stood to lose if something were to go awry; the risk population was much smaller than the benefiting population (Hardin 507). Because of the enormous complexity of this situation, it must be examined from a number of different and competing views.

But, before the actual interests and tradeoffs involving Chernobyl are discussed, a little must be said about the initial development of the Soviet nuclear industry. Sadly, when the Soviet nuclear energy program was in its infancy, the main debate focusing on nuclear power revolved around the issue of money, not safety. Other factors, such as state secrecy and a sense of nationalism, were also placed above safety when the Soviet Empire erected its national nuclear program. In particular, this sense of secrecy and nationalism caused many prominent Soviet leaders to ignore problems internal to the nuclear industry. For example: When the benefits of nuclear energy were being discussed by the Soviet Central Committee, members of the military establishment had information about a catastrophic accident at Mayak–a small experimental reactor initially built to produce plutonium for nuclear weapons. However, the Central Committee felt that this failure was in no way due to problems in the reactor design itself, and that the important thing was to learn about the effects of massive doses of radiation on the human body. Thus, this extremely important issue was not even considered by those who could have steered Soviet nuclear industry in a different direction. Considering this information from a traditional Western slant on the value of human life, one must remember that the Soviet nuclear program was developed during the most intense period of the Cold War, when Soviet leadership was convinced that an atomic war was inevitable and that knowledge about radiation could allow Soviet society to weather a nuclear holocaust. Sadly, these views and attitudes fostered a rather lackadaisical approach to atomic safety among those of rank and stature in the Soviet government. Why spend massive amounts of money on public safety if society is expected to be destroyed anyway (Read 10-11)?

Ranking monetary costs higher than atomic safety is one tradeoff that directly fueled the Chernobyl disaster. However, without the rising social pressures demanding energy, this lack of safety might never have had the chance to cause a major accident. It is this very craving for energy that has become the ultimate tradeoff in modern society; people want all the “goodies” that have been developed because of technology: electric stoves, air conditioning, computers, toasters, television, etc. Thus, developed nations are increasingly being forced to develop new sources of energy and implement them with an insufficient regard for proper testing. When Soviet planners in the late 1960s decided to erect the huge Chernobyl power plant, their training did not tell them that RBMK reactors were inherently unsafe. Instead, they studied projections of power consumption by those living in the western part of the Soviet Empire; according to the Ukraine Department of Energy, consumption of electricity would triple by the year 1990 (”The Chernobyl Nuclear Power Plant: Design and Construction”). Consequently, the decision to build a new power plant was easy; the only questions involved were where it was to be built and what type would best suit the needs of Soviet society.

At this point, one may ask: Why did the Soviet Union wish to fabricate nuclear power plants when they had huge reserves of natural gas and coal in eastern Siberia? This question has no quick easy answer, but there appears to have been two major factors. First, the Soviet government was obsessed with staying in the forefront of nuclear technology. Western nations had already demonstrated the ability to build Pressurized Water Cooled Reactors far in advance of what Soviet technology could perform, and this made the Soviet government wary about delaying future production of nuclear power plants. Second, most of the energy boom in the Soviet Union was occurring on the European side of the Empire while most of the resources were thousands of miles away in eastern Siberia. Because the density of energy obtained from nuclear fuel is thousands of times higher than that obtained from the best chemical processes, it was cheaper to transport small quantities of uranium ore thousands of miles than to send vast quantities of coal and natural gas (”Siberia”). This must be qualified with the fact that nuclear power plants are generally more expensive to run than conventional ones; but Soviet planners were betting that gradual improvements in nuclear technology would eventually allow it to shoulder the majority of electric production within the country (Read 10).

Because Soviet technology generally lagged behind that of Western nations throughout the Cold War, attempted duplications of advanced American Pressurized Water Cooled Reactors failed. What was needed was a quick way to expand massively the production of electricity within the vast area of the Soviet Union (Read 9-10). An easy answer came in the RBMK reactor. Because this reactor does not use a secondary thermal transfer loop to drive steam generators, Soviet officials felt that the massive containment structure needed for other nuclear reactor types was not needed in an RBMK. This would save money in two ways: first, the overall reactor would have a higher efficiency, using less uranium fuel per kilowatt hour of electricity produced; second, expenditures on building a massive steel and concrete containment structure could be eliminated. In this way, Soviet designers minimized costs at the expense of safety precautions (Read 15).

Obviously, electricity generated by Chernobyl benefited thousands of people spread over the eastern sector of the Soviet Union. However, the cost of the tragic accident has been much more highly concentrated among those in a small geographical area. In the case of Chernobyl, the Republic of Belarus and the Scandinavian countries–coupled with other European nations–took a large share of the released radiation. This tends to lead one to believe that the effects of this accident were spread over a vast area. But, this ignores the larger picture: while these other nations did absorb large quantities of radiation, the radionuclides that managed to travel such a distance from Chernobyl were mostly short-lived isotopes of cesium and iodine. In contrast, much of the radioactive particles spread over Pripyat and the immediate countryside near Chernobyl were heavier, longer-lived particles such as Uranium and Thorium. Thus, long after other European nations have healed from the harsh effects of radiation, Northern Ukraine will still be uninhabitable, unable to shake the lingering effects of radiation imposed upon it by Chernobyl (Marples 61-77).

When examining the Chernobyl incident, it must be remembered that Chernobyl was an accident in the truest sense, for the fact remains that except for an unfortunate test run on the reactor, this nuclear tragedy may well have never occurred. Thus, the costs and tradeoffs so far discussed cannot be viewed as results of decisions made by society to gain something at the expense of something else. Instead, the rather lax safety precautions undertaken in the Soviet nuclear industry must be considered in terms of the rather extreme set of circumstances created by Chernobyl operators that caused the accident. Soviet engineers might well have been right in their assessment that further shielding of the reactor was unnecessary; however, they were catastrophically wrong in their choice of personnel to run the reactor on a day to day basis (”The Causes of the Accident and Its Progress”).

The only aspect of Chernobyl where traditional costs and tradeoffs can be examined involves the immediate aftermath of the disaster, when the Soviet bureaucracy consistently slowed down efforts to contain the problem. When dispatched, Boris Scherbina, the minister responsible for fuel and energy within the Soviet Union, was faced with the crucial decision of evacuating the nearby town of Pripyat or trusting to the unpredictable Ukrainian winds. The physicists advising him favored immediate and complete evacuation of the town s fifty thousand members. However, Scherbina was worried that such a large evacuation could not be concealed from the rest of the Soviet population. Though the media could have been controlled, when rumors reached Kiev about the Chernobyl disaster, there might have been a mass exodus of over three million people, causing panic and unrest in one of the Soviet Union s largest cities. This would severely affect the international prestige of the Soviet Union, something that had to be protected at all costs according to Party indoctrination. Finally, more than thirty-six hours after the initial disaster, Scherbina decided that evacuating Pripyat was the right course of action. Sadly, had this order been given immediately, many people would not have been needlessly exposed to radiation; saving thousands of potential cancer cases (Read 100-110).

Solutions Attempted at Chernobyl

and Recommendations for the Future

The Chernobyl accident has been an eye opener in many respects. Not only did it force the international community to more closely scrutinize the nuclear industry, but it created a testing ground for untried techniques and equipment used to combat nuclear accidents. For the first time since Hiroshima and Nagasaki, the world would be confronted with the hellish images of radiated men, women, and children, living in a manmade radioactive wasteland. Globally, governments and high public officials wondered how the Soviet bureaucracy would react to the situation. Simultaneously, people across the planet wondered what could be done to ensure that an accident of this magnitude would never occur again. The purpose of this section is both to detail the Soviet response to Chernobyl and to suggest possible actions that could be taken to prevent further nuclear catastrophes.

Members of the fire station assigned to the Chernobyl power station were awakened at 1:23 A.M. on the morning of April 26, 1986, by the sickening sound of the fourth unit reactor core exploding. When the commanding officer of the fire station ran outside, he was immediately besieged with an apocalyptic sight of the shattered reactor burning in the distance. Before thinking, he immediately ordered his men to combat the raging fire that now consumed the entire reactor unit. His immediate concern was the roof which joined reactor complex four to reactor complex three. Obviously, the worst thing that could happen would to have the fire spread to the other reactors, possibly turning a horrible situation into something far worse. However, as the heroic firefighters battled the fires on the roof without radiation suits, not only did they have little success, but they began to feel giddy and weak, the first symptoms of severe radiation sickness. By 4:00 A.M. the same morning, additional firefighters arrived on the scene; finally, they began to have some success combating the hellish fires which were releasing tons of radioactive material into the atmosphere every hour (Read 74-75).

While the firefighters risked life and limb to combat a situation that they neither started nor could comprehend, plant operators–for the first time fully understanding the severity of the accident–frantically worked to drain hydrogen gas from the turbines in order to prevent further explosions. The other three reactors were then systematically shutdown to lessen the chance that another reactor would develop catastrophic problems due to the spreading fires. Meanwhile, Boris Scherbina, wrestled with the question of evacuating Pripyat. The Ministry of Health concluded that evacuation was unnecessary; however, the scientists advising Scherbina argued that the safest, surest course of action was evacuation. Fearing the political and international repercussions of a general evacuation, Scherbina stalled, wasting precious time that could have prevented the needless exposure of thousands of citizens to unnecessary levels of radiation (Read 100-104).

By 5:00 P.M. April 26, all the fires–except for the fire raging in the reactor hall–were extinguished. Scherbina, who was visiting the Chernobyl site to get a firsthand view of the disaster, was faced with another decision: Allow the graphite in the reactor core to burn out, or devise some ingenious method of extinguishing it. Advised both that it would take nearly two months for the graphite in the core to burn out, and that the uranium fuel left in reactor core could melt if the temperature rose too much, Scherbina decided that some way would have to be found to manually extinguish the fire. Water would have proved counterproductive; at the temperature that the reactor was burning, water would decompose into its component elements of hydrogen and oxygen, an explosive combination. The only method that the Soviet scientists could devise was to drop massive quantities of sand into the reactor building from hovering helicopters. The sand was laced with a mixture of boron, lead, and dolomite. The lead was used to cool the core because it has a boiling point of 1,744 C (a substance absorbs a great deal of energy during a change of state reaction). The dolomite broke down into magnesium, calcium and carbon dioxide, which further absorbed heat; furthermore, the carbon dioxide helped prevent oxygen from reaching the fire. Finally, boron is an outstanding neutron absorber and its purpose was to stop any lingering fission occurring within the core (Read 106). This process seemed to worked; however, it was necessary to drop sand into the reactor for more than a month to ensure that the fire would not restart. In all, some 5000 tons of various substances were dropped into the disintegrated reactor core before helicopter operations were terminated (”The Cause of the Accident and Its Progress”).

Finally, at 10:00 A.M., April 27, Scherbina ordered a general evacuation of the town of Pripyat. Families were told to pack enough clothes and supplies to last three days; most administrators at this time thought the evacuation would be temporary. Those people fortunate enough to be forewarned by family or friends working at Chernobyl had time to pack suitcases; others were forced to leave virtually all of their possessions behind. Because of the marvelous leadership skills of the army commander in charge of evacuation, General Berdov, the town was completely evacuated within two hours (Read 110-112).

By May 1, the reactor situation appeared to be under control. However, just when Soviet officials felt certain that the core would completely stabilize, radionuclides emanating from the reactor began to radically increase; the reactor was getting hotter, not cooler. Now Soviet scientists began to question the whole premise of dropping sand on the damaged reactor. Uranium does not need oxygen to undergo a chain reaction; also, with every load of sand dropped on the reactor, a large number of radioactive particles was thrown into the air. Furthermore, because sand is a good insulator, it was trapping the heat from the uranium in the core, the exact area that had to be kept cool. Worse yet, underneath the shattered reactor core was a concrete base, situated just above a bubbler pool of water. If the uranium burned through the concrete, it would react with the water, turning it into hydrogen and oxygen which would promptly detonate with horrific results. Unfortunately, the water could only be drained through gate valves located at the bottom of the pool. Two brave engineers volunteered to dive to the bottom and open the flood gates; they succeeded despite great risk to personal health (Read 132-135).

Though the bubbler pool was empty, more water was situated in the basement of the reactor building, poured there when operators tried to cool a non-existent reactor in the opening minutes of the accident. A group of firefighters volunteered to run large hoses into the basement, which could be used to drain this dangerous amount of water. By May 7, all of this water was completely drained, eliminating the immediate concern of a catastrophic explosion which could destroy the other Chernobyl reactor units (Read 135-137).