Смекни!
smekni.com

Биологическая мембрана (стр. 2 из 2)

способность переносить информацию без переноса энергии;

скорость распространения, превышающая скорость света в 1 млн. раз;

высокая проникающая способность.

Несмотря на неполноту опубликованных данных есть все основания предполагать, что торсионные поля являются важнейшим фактором наиболее быстрого обмена информацией между клетками и тканями, который обеспечивает рефлекторную гармоничность организма и синхронизацию процессов в нем, а также невидимую сеть коммуникации между организмами и их популяциями в иерархическом устройстве биосферы Земли. Внешними источниками свободной энергии для процессов жизненной динамики служат солнечный свет (прежде всего для растений и фотосинтезирующих бактерий) и ионизирующее излучение природного радиоактивного фона, геомагнитное поле Земли и легкие аэроионы ее атмосферы, образующиеся в результате ионизации молекул воздуха, а также неокисленные органические вещества, поступающие в клетки извне и используемые в качестве первичных источников энергии, ферментативные превращения которых ведут к образованию богатых энергией фосфатных соединений - своеобразной энергетической "валюты" для удовлетворения потребностей жизнедеятельности клетки. Молекулярный кислород, как внешний фактор, играет особо важную (возрастающую по мере перехода к более высоким ступеням эволюции) роль в энергетическом обеспечении процессов жизненной динамики у всех аэробных организмов. Во-первых, кислород служит конечным акцептором электронов в цепи переноса их в основном энергопоставляющем процессе живой клетки - процессе окислительного фосфорилирования. Во-вторых, он выступает активным реагентом в реакциях свободно радикального окисления липидов системы биомембран клетки, благодаря которым изменяется их конформация и конформации связанных с липидами белков, включая и ферменты, и создается пространственное расположение молекул последних и их ближайшего микроокружения, необходимое для проявления каталитической активности ферментов.

Значение молекулярного кислорода для процессов жизненной динамики не ограничивается только его участием в обеспечении живых клеток энергией. Без кислорода невозможен биосинтез и, соответственно, обновление им же окисленных важнейших структурных компонентов биомембран - стеринов и ненасыщенных жирных кислот, входящих в состав фосфолипидов. Необходимость одновременного и согласованного осуществления всех перечисленных функций определяет особое, системное значение молекулярного кислорода для дифференцированных клеток, как "общественных, коллективных существ", образующих ткани и органы многоклеточных организмов. Ярким и наглядным проявлением процессов жизненной динамики, наиболее выраженным у нормальных и опухолевых клеток организма человека и животных, являются движения протоплазмы, которые можно наблюдать при помощи светового микроскопа. Клетки, как отдельные так и в составе тканей, непрерывно изменяют свои очертания, могут замирать при раздражении, пульсируют, образуя впячивания и выступы и создавая тем самым, как заметили Г. М. Франк и В. Г. Астахова, впечатление непрерывного кипения. Аналогично ведут себя также клеточные органеллы, и прежде всего митохондрии и ядра живых клеток. Из-за ограниченной разрешающей способности светового микроскопа доказательства непрерывного движения мембранных образований живой клетки могут быть получены лишь косвенным путем. При этом, как отметил Г. М. Франк еще в 1962 году, впервые, по-видимому, осознавший функциональное и регуляторное значение структурной подвижности для жизнедеятельности клетки: "Чем более тонкий метод с наибольшей разрешающей способностью мы применяем, тем шире обнаруживаются отсутствия стабильности клеточных структур и непрерывное их изменение". Любые воздействия на живую клетку и изменения в окружающей ее среде (которые представляют собой сигналы, несущие информацию извне) приводят к соответствующим изменениям процессов жизненной динамики, которые компенсируют эти внешние воздействия. Таким образом обеспечивается адекватность взаимодействия клетки, как простейшей биологической системы, с ее окружением, то есть адаптация клетки к условиям внешней среды. Нарушения естественного протекания процессов жизненной динамики ведут к патологическим изменениям живой клетки. В случае продолжительности таких нарушений под воздействием различных физических и химических канцерогенных факторов, длительной гипоксии клеток, оказывающихся в условиях вяло протекающих, хронических воспалительных процессов, какими являются практически все предраковые состояния, а также в случаях биосинтеза аномальных для дифференцированной клетки белков в результате включения генома онкогенных вирусов в клеточный геном, происходит дезорганизация клетки и вынужденный переход ее на более примитивный уровень организации, характерный для всех делящихся клеток эукариотов на ранних этапах дифференцировки, то есть происходит злокачественное перерождение клетки. Единой общей чертой, объединяющей более 700 известных сейчас канцерогенных факторов, абсолютно различных по своей физической и химической природе (например, химические канцерогены и ионизирующее излучение, онковирусы, физическая травма и вживление пластмассовых пластинок, влияние геопатогенных зон, на счет воздействия которых сейчас относят более 50% злокачественных опухолей), является их дезорганизующее влияние на дифференцированные клетки. С этих позиций достаточно просто объясняется одна из сложнейших загадок онкологии: "Как под влиянием разнообразных по своей природе факторов возникает единый по множеству своих признаков процесс - злокачественная трансформация клеток?" Наиболее характерные особенности такой трансформации описаны в опубликованной автором в 1974 году кислородно-холестериновой гипотезе возникновения рака. Единственным исключением из принципа жизненной динамики является анабиоз у низших организмов и во многом сходные с ним процессы, происходящие при глубоком охлаждении и постепенном отогревании изолированных органов, тканей и отдельных клеток, а также целых организмов. При переходе клетки к анабиозу процессы жизненной динамики в ней почти полностью прекращаются, однако все ее структурные образования временно остаются в целостном, жизнеспособном состоянии, при котором сохраняется возможность возобновления нормальной жизнедеятельности при соответствующих благоприятных условиях. Во всех же других случаях прекращение процессов жизненной динамики неизбежно ведет к дезорганизации и гибели клетки. Все изложенное дает основание заключить, что принцип жизненной динамики определяет главное отличие живого и имеет, по всей видимости характер закона, устанавливающего единственно возможный путь перехода вещества, энергии и информации в организацию, рассматриваемую наряду с ними в качестве третьего составного компонента материи и определяемую с позиций кибернетики как разность между максимальной и текущей неопределенностью системы. Говоря другими словами, организация является мерой дефекта неопределенности системы по уравнению:

O = H 4max 0 - H,

,где O - организация системы, H 4max 0- максимальная неопределенность системы, H - текущая неопределенность системы. Неопределенность системы определяется по известной формуле К. Шеннона:

H = 7 S 0 p 4i 0 log p 4i 0,

,где p 4i 0- вероятность пребывания системы в i-ом состоянии, n - число состояний.