Смекни!
smekni.com

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами (стр. 2 из 3)

Предложена также методика для расчета частот и форм нормальных колебаний молекул, исходя из данных об их геометрическом строении и силовом поле с использованием решения прямой колебательной задачи путем нахождения собственных значений и собственных векторов в уравнении Шредингера методом приведения к матрице Хессенберга и использованием QR алгоритма с неявными сдвигами. Встроенная в программу база данных по геометрии фрагментов молекул и молярных масс атомов облегчает определение структуры химических соединений, поскольку достаточно изменить одну переменную и тогда все элементы матрицы, содержащей кинетические параметры, использующие ее, пересчитываются автоматически.

В третьей главе приведены результаты экспериментального исследования.

В разделе 3.1 описано изучение бинарных комплексов N-фосфонометилглицина с медью(II) методами потенциометрии и электронной спектроскопии, а также определение влияния аминокислоты (валина) на процесс комплексообразования.

По значениям констант депротонирования лигандов в условиях исследования процессов комплексообразования (температура, ионная сила), определенных нами методом рН метрии, были рассчитаны диаграммы распределения, представленные на рисунке 1.

Рисунок 1. Диаграмма распределения различных форм N-фосфономе-тилглицина и валина.

В системе Cu2+-H3PMG константы устойчивости комплексов убывают в ряду

, что в первом случае соответствует переходу от тридентатного связывания с образованием двух пятичленных хелатных колец к бидентатному с восьмичленным циклом, а во втором – объясняется стерическими затруднениями при образовании связи с двукратно протонированной фосфоновой группой.

Для тройных систем Cu2+-H3PMG-HVal нами были получены значения констант устойчивости

разнолигандных комплексов Cu(PMG)Val2- (lgβ1110 = 19.81(4)) и Cu(HPMG)Val- (lgβ1111 = 26.02(6)) и рассчитаны диаграммы распределения иона металла (рисунок 2). Образованию комплексов Cu(H2PMG)(HVal)+, Cu(HPMG)(HVal), Cu(HPMG)Val-, Cu(PMG)Val2-, по всей видимости, препятствует большая устойчивость при низких значениях рН бис-комплексов с формами HPMG2- и H2PMG-, способными образовывать хелатные комплексы.

Большую устойчивость комплекса Cu(PMG)Val2 по сравнению с Cu(PMG)

можно объяснить вхождением в координационную сферу иона металла меньшего по объему по сравнению с PMG3- хелатообразующего валинат-иона, также занимающего два места в экваториальной плоскости комплекса. По сравнению с Cu(Val)2 тройной комплекс устойчив за счет тридентатного характера связывания глифосат-аниона.

Рисунок. 2. Диаграммы распределения металла для растворов с соотношениями сCu: сPMG : сVal = 1:1:1 (а) и 1:2:2 (б) (сCu=0.0015 моль/л, 0.1 М KCl).

В электронных спектрах в системе Cu2+-H3PMG при увеличении рН и соотношения сPMG: сCu возрастает оптическая плотность, максимум полосы поглощения смещается в длинноволновую область не превышая значения 14500 см-1, что означает присутствие не более одного атома азота в экваториальной плоскости комплекса, то есть в комплексе Cu(PMG)

одна из донорных групп не принимает участия в связывании и один из лигандов координирован бидентатно. Об этом также свидетельствует его константа устойчивости, которая намного ниже ожидаемой при одинаковой координации обоих лигандов.

Добавление в систему валина смещает сигнал в длинноволновую область и при рН > 8 максимум полосы поглощения имеет значение свыше 14500 см-1, что подтверждает нахождение в экваториальной плоскости комплекса двух донорных атомов азота.

Значения констант устойчивости, полученные в ходе компьютерной обработки оптических спектров, соответствуют данным рН метрического титрования, что свидетельствует о корректности выбранной схемы равновесий. Нами предложены следующие способы координации в разнолигандных комплексах:

Cu(HPMG)Val- Cu(PMG)Val2–

В разделе 3.2 описано исследование строения комплексов Cu(II) с 2-[2-гидроксифенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (I) и 2-[2-гидрокси-5-нитрофенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (II) методами ЭПР и электронной спектроскопии.

По данным ИК спектров установлено, что в реакции комплексообразования участвует именно азометиновая форма лигандов. Данные ЭПР (наличие дополнительной сверхтонкой структуры от двух ядер азота) позволяют предположить следующее строение координационного центра:

(Х = H (I); NO2 (II)).

Разложение электронного спектра на Гауссовы составляющие с помощью программы ГАЭС позволяет выделить четыре компоненты, параметры которых приведены в таблице 2, соответствующие d-d переходам.

Приравнивая, полученные в рамках МУП, выражения для энергии переходов между d-орбиталями со значениями ν0 из таблицы 2, получаем системы уравнений для четырех возможных вариантов расположения энергетических уровней:

1)

;

2)

;

3)

;

4)

.

Таблица 2.

Параметры полос поглощения отдельных электронных переходов в комплексах меди(II) c соединениями I и II.

№ перехода e, дм3∙моль-1∙см-1 ν0, см-1 δ½, см-1 f, 10-4
I
1 20 14047 1910 10.57
2 39 15422 1078 11.63
3 29 17111 1000 8.023
4 27 19033 1133 8.463
II
1 12 14122 2100 6.972
2 39 15820 1284 13.85
3 23 17928 1036 6.592
4 18 19581 1022 5.089

Значения параметров МУП найдены нами решением полученных систем уравнений и приведены в таблице 3.

Анализ рассчитанных значений параметров МУП позволяет считать вариант (2) более предпочтительным, так как для него выполняется ряд соотношений:

>
(где l=s, p), поскольку атом азота образует более прочные ковалентные связи;
≈ 3-5 для всех донорных атомов и
, характерно для координационных связей меди(II) с N- и O-содержащими донорными группами.

Таблица 3.

Параметры МУП комплексных соединений, рассчитанные по электронным спектрам.

ВариантПараметры Cu(II) + I Cu(II) + II
(1) (2) (3) (4) (1) (2) (3) (4)
7100 7100 7100 7100 7100 7100 7100 7100
6947 8322 10011 11933 7022 8720 10828 12481
1979.8 3011 3317 5719 1628 2901 3656 5722
1018.8 2050 5122 6564 801 2074.5 5536 6776
2824.3 4543 5810 7251 2681.5 4804 6385 7625

Так как энергия

-орбитали может быть меньше энергии
-орбитали лишь в случае отсутствия координации в аксиальных положениях, то можно считать, что данные электронной спектроскопии свидетельствуют о неучастии в координации атомов кислорода трифенилкарбинола в растворе и подтверждают предложенную выше структуру.

Таким образом, данные электронных спектров подтверждают структуру комплекса, предложенную выше.

Раздел 3.3 посвящен определению структуры комплекса меди(II) состава Cu(НGala)2×4H2O методом ИК спектроскопии.

Произведенный нами эмпирический анализ и сравнение ИК спектров галактаровой кислоты (ГК) и галактарата меди(II) показал, что при комплексобразовании происходит разрыв водородных связей свободной кислоты, и взаимодействие спиртовых групп (νОНспирт) ГК с ионом металла, причем только одна из карбоксильных групп ГК связывается с ионом меди(II), а другая – остается связанной водородной связью с карбоксильной группой ГК молекулы соседнего комплекса.

Расщепление полосы поглощения, принадлежащей валентным колебаниям карбонильной группы ГК, в спектре комплекса на две полосы поглощения 1618 и 1385 см-1, соответствующие антисимметричным и симметричным валентным колебанием депротонированной карбоксильной группы (νasCOO־ и νsCOO־, соответственно) ГК. Значение ΔνCOO־ равное 233 см-1 и присутствие в ИК спектре галактарата меди полосы средней интенсивности в области 1729 см-1 свидетельствует о монодентатной координации карбоксильной группы с ионом меди(II).