Предложена также методика для расчета частот и форм нормальных колебаний молекул, исходя из данных об их геометрическом строении и силовом поле с использованием решения прямой колебательной задачи путем нахождения собственных значений и собственных векторов в уравнении Шредингера методом приведения к матрице Хессенберга и использованием QR алгоритма с неявными сдвигами. Встроенная в программу база данных по геометрии фрагментов молекул и молярных масс атомов облегчает определение структуры химических соединений, поскольку достаточно изменить одну переменную и тогда все элементы матрицы, содержащей кинетические параметры, использующие ее, пересчитываются автоматически.
В третьей главе приведены результаты экспериментального исследования.
В разделе 3.1 описано изучение бинарных комплексов N-фосфонометилглицина с медью(II) методами потенциометрии и электронной спектроскопии, а также определение влияния аминокислоты (валина) на процесс комплексообразования.
По значениям констант депротонирования лигандов в условиях исследования процессов комплексообразования (температура, ионная сила), определенных нами методом рН метрии, были рассчитаны диаграммы распределения, представленные на рисунке 1.
Рисунок 1. Диаграмма распределения различных форм N-фосфономе-тилглицина и валина.
В системе Cu2+-H3PMG константы устойчивости комплексов убывают в ряду
, что в первом случае соответствует переходу от тридентатного связывания с образованием двух пятичленных хелатных колец к бидентатному с восьмичленным циклом, а во втором – объясняется стерическими затруднениями при образовании связи с двукратно протонированной фосфоновой группой.Для тройных систем Cu2+-H3PMG-HVal нами были получены значения констант устойчивости
разнолигандных комплексов Cu(PMG)Val2- (lgβ1110 = 19.81(4)) и Cu(HPMG)Val- (lgβ1111 = 26.02(6)) и рассчитаны диаграммы распределения иона металла (рисунок 2). Образованию комплексов Cu(H2PMG)(HVal)+, Cu(HPMG)(HVal), Cu(HPMG)Val-, Cu(PMG)Val2-, по всей видимости, препятствует большая устойчивость при низких значениях рН бис-комплексов с формами HPMG2- и H2PMG-, способными образовывать хелатные комплексы.Большую устойчивость комплекса Cu(PMG)Val2 по сравнению с Cu(PMG)
можно объяснить вхождением в координационную сферу иона металла меньшего по объему по сравнению с PMG3- хелатообразующего валинат-иона, также занимающего два места в экваториальной плоскости комплекса. По сравнению с Cu(Val)2 тройной комплекс устойчив за счет тридентатного характера связывания глифосат-аниона.Рисунок. 2. Диаграммы распределения металла для растворов с соотношениями сCu: сPMG : сVal = 1:1:1 (а) и 1:2:2 (б) (сCu=0.0015 моль/л, 0.1 М KCl).
В электронных спектрах в системе Cu2+-H3PMG при увеличении рН и соотношения сPMG: сCu возрастает оптическая плотность, максимум полосы поглощения смещается в длинноволновую область не превышая значения 14500 см-1, что означает присутствие не более одного атома азота в экваториальной плоскости комплекса, то есть в комплексе Cu(PMG)
одна из донорных групп не принимает участия в связывании и один из лигандов координирован бидентатно. Об этом также свидетельствует его константа устойчивости, которая намного ниже ожидаемой при одинаковой координации обоих лигандов.Добавление в систему валина смещает сигнал в длинноволновую область и при рН > 8 максимум полосы поглощения имеет значение свыше 14500 см-1, что подтверждает нахождение в экваториальной плоскости комплекса двух донорных атомов азота.
Значения констант устойчивости, полученные в ходе компьютерной обработки оптических спектров, соответствуют данным рН метрического титрования, что свидетельствует о корректности выбранной схемы равновесий. Нами предложены следующие способы координации в разнолигандных комплексах:
Cu(HPMG)Val- Cu(PMG)Val2–
В разделе 3.2 описано исследование строения комплексов Cu(II) с 2-[2-гидроксифенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (I) и 2-[2-гидрокси-5-нитрофенил]-4,4-дифенил-1,2-дигидро-4Н-3,1-бензоксазином (II) методами ЭПР и электронной спектроскопии.
По данным ИК спектров установлено, что в реакции комплексообразования участвует именно азометиновая форма лигандов. Данные ЭПР (наличие дополнительной сверхтонкой структуры от двух ядер азота) позволяют предположить следующее строение координационного центра:
(Х = H (I); NO2 (II)).Разложение электронного спектра на Гауссовы составляющие с помощью программы ГАЭС позволяет выделить четыре компоненты, параметры которых приведены в таблице 2, соответствующие d-d переходам.
Приравнивая, полученные в рамках МУП, выражения для энергии переходов между d-орбиталями со значениями ν0 из таблицы 2, получаем системы уравнений для четырех возможных вариантов расположения энергетических уровней:
1)
;2)
;3)
;4)
.Таблица 2.
Параметры полос поглощения отдельных электронных переходов в комплексах меди(II) c соединениями I и II.
№ перехода | e, дм3∙моль-1∙см-1 | ν0, см-1 | δ½, см-1 | f, 10-4 |
I | ||||
1 | 20 | 14047 | 1910 | 10.57 |
2 | 39 | 15422 | 1078 | 11.63 |
3 | 29 | 17111 | 1000 | 8.023 |
4 | 27 | 19033 | 1133 | 8.463 |
II | ||||
1 | 12 | 14122 | 2100 | 6.972 |
2 | 39 | 15820 | 1284 | 13.85 |
3 | 23 | 17928 | 1036 | 6.592 |
4 | 18 | 19581 | 1022 | 5.089 |
Значения параметров МУП найдены нами решением полученных систем уравнений и приведены в таблице 3.
Анализ рассчитанных значений параметров МУП позволяет считать вариант (2) более предпочтительным, так как для него выполняется ряд соотношений:
> (где l=s, p), поскольку атом азота образует более прочные ковалентные связи; ≈ 3-5 для всех донорных атомов и , характерно для координационных связей меди(II) с N- и O-содержащими донорными группами.Таблица 3.
Параметры МУП комплексных соединений, рассчитанные по электронным спектрам.
ВариантПараметры | Cu(II) + I | Cu(II) + II | ||||||
(1) | (2) | (3) | (4) | (1) | (2) | (3) | (4) | |
7100 | 7100 | 7100 | 7100 | 7100 | 7100 | 7100 | 7100 | |
6947 | 8322 | 10011 | 11933 | 7022 | 8720 | 10828 | 12481 | |
1979.8 | 3011 | 3317 | 5719 | 1628 | 2901 | 3656 | 5722 | |
1018.8 | 2050 | 5122 | 6564 | 801 | 2074.5 | 5536 | 6776 | |
2824.3 | 4543 | 5810 | 7251 | 2681.5 | 4804 | 6385 | 7625 |
Так как энергия
-орбитали может быть меньше энергии -орбитали лишь в случае отсутствия координации в аксиальных положениях, то можно считать, что данные электронной спектроскопии свидетельствуют о неучастии в координации атомов кислорода трифенилкарбинола в растворе и подтверждают предложенную выше структуру.Таким образом, данные электронных спектров подтверждают структуру комплекса, предложенную выше.
Раздел 3.3 посвящен определению структуры комплекса меди(II) состава Cu(НGala)2×4H2O методом ИК спектроскопии.
Произведенный нами эмпирический анализ и сравнение ИК спектров галактаровой кислоты (ГК) и галактарата меди(II) показал, что при комплексобразовании происходит разрыв водородных связей свободной кислоты, и взаимодействие спиртовых групп (νОНспирт) ГК с ионом металла, причем только одна из карбоксильных групп ГК связывается с ионом меди(II), а другая – остается связанной водородной связью с карбоксильной группой ГК молекулы соседнего комплекса.
Расщепление полосы поглощения, принадлежащей валентным колебаниям карбонильной группы ГК, в спектре комплекса на две полосы поглощения 1618 и 1385 см-1, соответствующие антисимметричным и симметричным валентным колебанием депротонированной карбоксильной группы (νasCOO־ и νsCOO־, соответственно) ГК. Значение ΔνCOO־ равное 233 см-1 и присутствие в ИК спектре галактарата меди полосы средней интенсивности в области 1729 см-1 свидетельствует о монодентатной координации карбоксильной группы с ионом меди(II).