Смекни!
smekni.com

Строение и свойства координационных соединений меди(II) с некоторыми О, N – содержащими лигандами (стр. 1 из 3)

Скляр Александр Александрович

Автореферат диссертации на соискание ученой степени кандидата химических наук

Краснодар 2006

Работа выполнена на кафедре общей и неорганической химии Кубанского государственного университета

Общая характеристика работы

Актуальность работы:

Медь является необходимым следовым элементом в теле человека, при этом большинство ионов меди(II) в человеческой плазме крови найдено в форме смешанных комплексов с молекулами аминокислот, пептидов и других органических молекул. Несмотря на то, что изучение комплексообразования меди(II) с биологически активными лигандами является предметом исследования на протяжении нескольких последних десятилетий, ряд аспектов является до конца невыясненным. Это обусловлено, в первую очередь, сложностью рассматриваемых систем, поскольку процессы протекают в многокомпонентных системах, часто с участием молекул – полимеров, имеющих в своем составе большое количество функциональных групп. Одним из способов решения рассматриваемой задачи является моделирование физиологических процессов на примере взаимодействия ионов металлов, обладающих спектральными свойствами, и лигандов, имеющих в своем составе те же функциональные группы, что и рассматриваемый биологический объект.

Большинство органических лигандов, являющихся аналогами природных соединений, способных взаимодействовать с ионами меди, содержат в своем составе кислород- и (или) азот- содержащие группы, за счет которых и возможна координация. При этом координация может осуществляться различными способами, что связано как со строением молекулы лиганда (взаимным расположением донорных групп), так и с влиянием условий протекания реакции комплексообразования.

Наиболее распространенным методом исследования комплексообразования в растворе является метод потенциометрического титрования, который, обладая рядом положительных характеристик, имеет недостаток, связанный с тем, что выбор схемы равновесия делается, как правило, априорно. Напротив, применение спектральных методов, позволяет конкретизировать состав и строение образующихся в растворе комплексов. Однако извлечение химической информации из спектральных данных представляет собой довольно сложную и не всегда выполнимую задачу. Поэтому актуальной является работа по расширению границ использования спектроскопических методов к исследованию комплексных соединений, усовершенствованию способов обработки спектров с помощью современной вычислительной техники.

Диссертационная работа выполнена в соответствии с темой научно-исследовательской работы кафедры общей и неорганической химии Кубанского государственного университета (№ государственной регистрации 01178695675) в соответствии с координационным планом РАН по направлению 2.17. по теме “Координационные соединения и материалы на их основе” и при финансовой поддержке РФФИ (грант 06-03-32881-а).

Цель и задачи работы.

Целью настоящей работы являлась разработка новых теоретических и экспериментальных подходов для изучения комплексообразования меди(II) с органическими соединениями, содержащими в качестве донорных атомы азота и кислорода.

В ходе выполнения исследования решались следующие задачи:

Разработка методик расчета характеристик комплексных соединений в растворе методами потенциометрического титрования и электронной спектроскопии при наличии равновесий различного типа без ограничения количества и состава частиц.

Изучение зависимости состава и свойств комплексов N-фосфонометилглицина с медью(II) от рН.

Изучение строения комплексов меди(II) с 1,2-дигидро-4Н-3,1-бензоксазинами в растворе.

Определение способа координации галактаровой кислоты с медью(II) по данным ИК спектров.

Научная новизна работы:

С помощью разработанных компьютерных программ обработаны полученные экспериментальные данные, что позволило рассчитать характеристики комплексных соединений, определить строение и свойства соединений меди(II) с рядом органических лигандов, содержащих в качестве донорных атомы кислорода и азота.

Практическая значимость работы. Созданные компьютерные программы расчетов и экспериментальные данные диссертационной работы могут быть использованы в научной деятельности, а также при проведении лекционных и семинарских занятий по химии координационных соединений в Кубанском, Казанском, Ростовском, Иркутском и др. университетах.

Апробация работы. Результаты работы представлены на IV международной научно-практической конференции «Компьютерные технологии в науке, производстве, социальных и экономических процессах» (Новочеркасск, 2003), VII Международного семинаре по магнитному резонансу (спектроскопия, томография и экология) (Ростов н/Д, 2004), IV международной науч.-практ. конференции «Моделирование. Теория, методы и средства» (Новочеркасск, 2004), Национальных Конференциях «Информационно-вычислительные технологии в решении фундаментальных научных проблем и прикладных задач химии, биологии, фармацевтики и медицины»: ИВТН-2004 и ИВТН-2005 (Екатеринбург, 2004, 2005), XXII Международной Чугаевской конференции по координационной химии (Кишинев, 2005), XV Российской студенческой научной конференции «проблемы теоретической и экспериментальной химии» (Екатеринбург 2005), IV Всероссийской конференции молодых ученых “Современные проблемы теоретической и экспериментальной химии” (Саратов, 2003).

Публикации. Основное содержание работы нашло отражение в 14 публикациях.

Структура и объем работы. Диссертация состоит из введения, 3 глав, выводов и списка цитируемой литературы (130 наименования). Работа изложена на 115 страницах, включает 14 рисунков и 13 таблиц.

Основное содержание работы

Во введении обоснована актуальность работы, сформулированы цели и задачи исследования.

В первой главе приведен обзор имеющихся литературных данных о спектроскопических методах изучения комплексных соединений, интерпретации экспериментальных спектров ЭПР, электронных и ИК спектров. Проведен анализ методик исследования строения и свойств и расчета параметров комплексных соединений с использованием ЭВМ.

Во второй главе представлены результаты теоретического исследования, в ходе которого разработана методика определения состава, строения и свойств комплексных соединений металлов на основе совместного применении методов потенциометрического титрования и электронных спектров, предложены новые компьютерные программы для: обработки электронных, ЭПР спектров и pH потенциометрических кривых растворов, содержащих ион металла и лиганд(ы), с учетом возможности образования комплексов с различными формами лигандов; предложена методика разделения электронных спектров комплексов на составляющие методом гауссиан анализа и нахождение спектральных характеристик; определения частот и форм нормальных колебаний комплексных соединений по данным ИК спектров.

В программе обработки спектров и pH кривых в блоке расчета мольных долей компонентов системы применяется метод Бринкли, модифицированный для расчета при известной концентрации ионов водорода. Данный метод добавляет ряд контролирующих инструкций к решению системы уравнений по схеме Ньютона-Рафсона, что исключает получение результатов, не имеющих физического смысла. Блок оптимизации искомых параметров включает в себя методы сканирования, координатного и градиентного спуска.

Таким образом, разработанный нами программный комплекс для интерпретации экспериментальных спектров, позволяет автоматически определять константы устойчивости комплексов из спектров ЭПР, электронных спектров и кривых потенциометрического титрования, а также другие параметры ЭПР и электронных спектров.

Для нахождения числа электронных переходов и их характеристик по данным электронных спектров нами создана программа ГАЭС (Гауссиан Анализ Электронных Спектров), позволяющая находить спектральные параметры компонент теоретического спектра, как в ручном так и в автоматическом режиме.

Разработана методика определения строения комплексных соединений из анализа электронного спектра в области d-d-переходов, в основе которого лежит модель углового перекрывания (МУП), выделяющая радиальные параметры, учитывающие степень связывания или разрыхления σ– и π–связей металл-лиганд и угловые множители, зависящие от геометрии молекулы.

Для сложных молекул MLn энергетические уровни находится суммированием возмущений d-орбиталей, вызываемых каждым из лигандов с учетом ориентации этих орбиталей относительно связей металл-лиганд:

(1)

где

- ,
- ,
- угловые множители, j=1..5 – порядковый номер d-орбитали; i=1..n – порядковый номер лиганда; n-количество лигандов.

При наиболее распространенном октаэдрическом окружении иона металла лигандами угловые координаты лигандов будут иметь значения, приведенные в таблице 1.

Таблица 1.

Угловые координаты лигандов.

Лиганд Θ φ
L1 90 0
L2 90 180
L3 90 90
L4 90 270
L5 0 0
L6 180 0

Расчет угловых множителей по данным угловых координат лигандов (таблица 1) приводит выражения для энергии d – орбиталей комплекса (1) к виду:

(2)

Таким образом, приравнивая энергию переходов между d-орбиталями, выраженную через параметры МУП, со значениями этих энергий, найденными из гауссиан анализа экспериментального электронного спектра, получаем систему уравнений для каждого варианта расположения энергетических уровней. Решая полученные уравнения относительно радиальных параметров МУП и анализируя их значения, характерные для координационных соединений, определяется правильный вариант расположения энергетических уровней.