Смекни!
smekni.com

Звезды во Вселенной (стр. 4 из 5)

Спектральная классификация. Все разнообразие звездных спектров можно уложить в логичную систему. Гарвардская спектральная классификация впервые была представлена в Каталоге звездных спектров Генри Дрэпера, подготовленного под руководством Э.Пикеринга (1846–1919). Сначала спектры были расставлены по интенсивности линий и обозначены буквами в алфавитном порядке. Но развитая позже физическая теория спектров позволила расположить их в температурную последовательность. Буквенное обозначение спектров не изменили, и теперь порядок основных спектральных классов от горячих к холодным звездам выглядит так: O B A F G K M. Дополнительными классами R, N и S обозначены спектры, похожие на K и M, но с иным химическим составом. Между каждыми двумя классами введены подклассы, обозначенные цифрами от 0 до 9. Например, спектр типа A5 находится посередине между A0 и F0. Дополнительными буквами иногда отмечают особенности звезд: «d» – карлик, «D» – белый карлик, «p» – пекулярный (необычный) спектр.

Наиболее точную спектральную классификацию представляет система МК, созданная У.Морганом и Ф.Кинаном в Йеркской обсерватории. Это двумерная система, в которой спектры расставлены как по температуре, так и по светимости звезд. Ее преемственность с одномерной Гарвардской классификацией в том, что температурная последовательность выражена теми же буквами и цифрами (A3, K5, G2 и т.д.). Но дополнительно введены классы светимости, отмеченные римскими цифрами: Ia, Ib, II, III, IV, V и VI, соответственно указывающие на яркие сверхгиганты, сверхгиганты, яркие гиганты, нормальные гиганты, субгиганты, карлики (звезды главной последовательности) и субкарлики. Например, обозначение G2 V относится к звезде типа Солнца, а обозначение G2 III показывает, что это нормальный гигант с температурой примерно как у Солнца.

ГАРВАРДСКАЯ СПЕКТРАЛЬНАЯ КЛАССИФИКАЦИЯ

Спектральный класс Эффективная температура, К

Цвет

O 26000–35000

Голубой

В 12000–25000

Бело-голубой

А 8000–11000

Белый

F 6200–7900

Желто-белый

G 5000–6100

Желтый

К 3500–4900

Оранжевый

М 2600–3400

Красный

Последовательности звезд. В 1905–1913 Э.Герцшпрунг в Дании и Г.Рессел в США независимо нашли эмпирическую связь между температурой (спектральным классом) и светимостью звезд. Они обнаружили, что большинство звезд лежит вдоль широкой полосы на диаграмме температура – светимость. Эта полоса, названная «главной последовательностью», проходит от верхнего левого угла диаграммы, где находятся горячие и яркие О и В звезды, к правому нижнему углу, населенному холодными и тусклыми К и М карликами.

Открытие главной последовательности стало сюрпризом: было неясно, почему звезды с определенной температурой поверхности не могут иметь какой угодно размер, а следовательно и светимость. Оказалось, что радиус звезды и температура ее поверхности связаны друг с другом.


На диаграмме Герцшпрунга – Рессела обнаружилась и вторая последовательность – ветвь гигантов, широкой полосой отходящая от середины главной последовательности (класс G, абсолютная звездная величина +1) почти перпендикулярно ей в сторону верхнего правого угла диаграммы (класс М, абсолютная величина -1). На ветви гигантов лежат звезды большого размера и довольно высокой светимости, в отличие от карликов, населяющих главную последовательность. Они разделены «провалом Герцшпрунга».

В нижнем левом углу диаграммы расположились белые карлики – необычные звезды с высокой температурой поверхности, но низкой светимостью, что указывает на их очень маленький размер. В этих остатках эволюции нормальных звезд уже не происходит термоядерных реакций, и они медленно остывают.

Спустя несколько десятилетий после открытия Герцшпрунга и Рессела выяснилось, что у разных групп звезд диаграммы температура–светимость существенно различаются. Особенно ясно это прослеживается при сравнении звездных скоплений, в каждом из которых все звезды имеют одинаковый возраст. Диаграммы рассеянных скоплений, таких, как Гиады и Плеяды, в целом похожи на диаграмму околосолнечных звезд и резко отличаются от диаграмм шаровых скоплений, таких, как большое скопление в Геркулесе, где яркая часть главной последовательности отсутствует, а нижняя ее часть смыкается с ветвью гигантов, круто уходящей вверх, в область больших светимостей. Такие диаграммы оказались характерными для звезд Населения II, а диаграммы рассеянных скоплений типичны для звезд Населения I. Таким образом, диаграмма Герцшпрунга – Рессела служит важным инструментом для выяснения эволюционного статуса звездных населений.

Звездные скопления. Известны три различных типа звездных группировок: звездные ассоциации, шаровые скопления и рассеянные скопления (иногда их называют «открытыми» или «галактическими»). Звездные скопления очень ценны для астрофизики, поскольку это группы звезд, одинаково удаленных от нас и сформировавшихся одновременно из вещества одного облака. Звезды в пределах одного скопления различаются лишь исходной массой, что значительно облегчает изучение их эволюции.

Звездные ассоциации. Это относительно разреженные группировки звезд, разлетающихся от общего центра, где они, вероятно, родились. Если проследить их траектории обратно, то оказывается, что они «тронулись в путь» всего около миллиона лет назад – совсем недавно по звездным масштабам. Ассоциации расположены в спиральных рукавах Галактики, там же, где сконцентрировано межзвездное вещество, из которого формируются звезды. Известно менее ста ассоциаций, и все они состоят из молодых, ярких и массивных звезд в основном спектральных классов О и В. Звезды меньшей массы в ассоциациях тоже есть, но их сложнее распознать. Когда через несколько миллионов лет эволюция О и В звезд закончится, заметить на небе ныне известные ассоциации станет невозможно. Все говорит о том, что ассоциации – короткоживущие образования. Возможно, большая часть звезд в Галактике родилась именно в составе ассоциаций.

Рассеянные скопления. Замечательными представителями звездных скоплений более высокого порядка служат Плеяды, Гиады и Ясли. Если в ассоциациях наблюдается обычно не более 100 звезд, то в рассеянных скоплениях – порядка 1000. Более плотно упакованные, они могут значительно дольше противостоять разрушающему гравитационному влиянию Галактики; например, возраст скопления Плеяды, определенный по виду его диаграммы Герцшпрунга – Рессела, ок. 50 млн. лет. Еще более плотные скопления могут сохраняться сотни миллионов лет; одно из старейших рассеянных скоплений М 67 является и наиболее плотным из них. Известно более 1000 рассеянных скоплений, однако еще многие тысячи их наверняка скрываются в удаленных областях Галактики.

Шаровые скопления. Эти скопления во многих отношениях отличаются от рассеянных скоплений и ассоциаций. До сих пор обнаружено около 150 шаровые скоплений и, похоже, это почти все, что есть в Галактике. Не заметить их трудно: при диаметре от 40 до 900 св. лет они содержат от 10 000 до нескольких миллионов звезд. Такие «монстры» видны на больших расстояниях. К тому же они не скрываются в запыленном диске Галактики, а заполняют весь ее объем, концентрируясь к галактическому ядру.

Фотографии шаровых скоплений, таких, как М 13 в созвездии Геркулеса, представляют впечатляющее зрелище. В центре скопления звезды кажутся слившимися в единое месиво, хотя в действительности расстояния между ними не так уж малы и столкновения звезд практически не происходят. Каждая из звезд движется по орбите вокруг центра скопления, а оно само движется по орбите вокруг центра Галактики.

Благодаря своей большой массе и плотности шаровые скопления очень устойчивы; они почти без изменений существуют миллиарды лет. Их звезды родились в эпоху формирования Галактики; они содержат мало тяжелых элементов и относятся к Населению II. В нашу эпоху такие звезды уже не формируются.

Источники энергии звезд. Когда теория Эйнштейна возвестила об эквивалентности массы (m) и энергии (E), связанных соотношением E = mc2, где c – скорость света, стало ясно, что для поддержания излучения Солнца с мощностью 4ґ1026 Вт необходимо ежесекундно превращать в излучение 4,5 млн. т его массы. По земным меркам эта величина выглядит большой, но для Солнца, имеющего массу 2ґ1027 т, такая потеря остается незаметной в течение миллиардов лет.

Излучение звезд поддерживается в основном за счет двух типов термоядерных реакций. У массивных звезд это реакции углерод-азотного цикла, а у маломассивных звезд типа Солнца это протон-протонные реакции. В первых углерод играет роль катализатора: сам не расходуется, но способствует превращению других элементов, в результате чего 4 ядра водорода объединяются в одно ядро гелия.

Углерод-12 +

протон ®

азот-13 + гамма-лучи

азот-13 ®

углерод-13 +

позитрон + нейтрино

углерод-13 +

протон ®

азот-14 + гамма-лучи

азот-14 +

протон ®

кислород-15 + гамма-лучи

кислород-15 ®

азот-15 +

позитрон + гамма-лучи

азот-15 +

протон ®

углерод-12 + гелий-4

Выраженные в атомных единицах, массы ядер водорода и гелия составляют соответственно 1,00813 и 4,00389. Четыре водородных ядра (т.е. протона) имеют массу 4,03252 и, следовательно, на 0,02863 а.е., или на 0,7% превосходят массу ядра гелия. Эта разница превращается в энергичные гамма-кванты, которые, много раз поглощаясь и излучаясь, постепенно просачиваются к поверхности звезды и покидают ее в виде света. Похожие трансформации вещества происходят и в протон-протонной реакции:

протон +

протон &®

дейтрон +

позитрон + нейтрино

дейтрон +

протон &®