Смекни!
smekni.com

Ароматические углеводороды (арены) (стр. 5 из 8)

СН3° СН3° СН3°

СН3*

° * °° * °°

* * СН3* * *

°° *

СН3*

ном ядре. При несогласованном влиянии двух разных заместителей I рода направление замещения определяется тем из них, ориентирующая активность которого больше. Когда влияние заместителей I и II рода не согласовано, реакция протекает преимущественно под влиянием заместителей I рода.

Реакции присоединения

Присоединение водорода (реакция гидрирования).

Как уже было упомянуто, бензол присоединяет 6 атомов водорода, при этом получается циклогексан:

СН CН2

НС СН t Н2С СН2

+ 3Н2 ¾¾®

НС СН Ni, Pt Н2С СН2

СН СН2

Реакция протекает в присутствии мелкораздробленного никеля при нагревании (Сабатье и Сандеран, 1901). Гидрированию подвергаются и другие ароматические соединения ряда бензола, превращаясь в производные циклогексана.

Присоединение галогенов

Если действовать хлором или бромом на бензол при освещении УФ-лучами или прямым солнечным светом, происходит присоединение шести атомов галогена и образуются галогенпроизводные циклогексана. Например:

СН CНCl

НС СН hn ClНС СНCl

+ 3Cl2 ¾¾®

НС СН ClНС СНCl

СН СНCl

Продукт присоединения хлора – гексахлорциклогексан – в прошлом производился в больших количествах и находил широкое применение как инсектицид; в продажу выпускался под названием гексахлоран. Среднетоксичен. В настоящее время практически не используется.

Действие окислителей

Бензол еще более стоек к действию окислителей, чем предельные углеводороды. Он не окисляется разбавленной HNO3 , раствором KMnO4 и т.д. Гомологи бензола окисляются значительно легче. Но и в них бензольное ядро относительно более устойчиво к действию окислителей, чем соединенные с ним углеводородные радикалы.

В условиях очень энергичного окисления, например кислородом воздуха при температуре 350-400 оС в присутствии катализатора V2O5, кольцо бензола разрывается и образуется малеиновый ангидрид:

НС—С=О

+ 4,5О2 ¾¾® II O +2CО2 + 2Н2О

V2O5 НС—С=О

Малеиновый ангидрид легко присоединяет молекулу воды, превращаясь в двухосновную непредельную кислоту:

НС—С=О НС—СООН

II О + Н2О ¾® II

НС—С=О НС—СООН малеиновая кислота

Обычно в первую очередь окисляются боковые цепи, а бензольное ядро не изменяется. Как бы ни была сложна боковая цель, она при действии сильных окислителей разрушается, и лишь углерод, непосредственно связанный с ядром, не отрывается от него и превращается в карбоксильную группу – COOH. Таким образом, любой гомолог бензола с одной боковой целью окисляется в одноосновную ароматическую (бензойную) кислоту:

3 [О] О

—СН3 ¾¾® —C + Н2О

ОН

6 [О] О

—СН2—СН3 ¾¾® —C + СО2 + Н2О

ОН

Гомологи бензола с несколькими боковыми цепями любой сложности окисляются с образованием многоосновных ароматических кислот. Так, из двухзамещенных гомологов образуются двухосновные (фталевые) кислоты:

—СН3 6 [О] —СООН

—СН3 ¾¾® —CООН + 2Н2О

о-фталевая кислота

СН3 СООН

9 [О]

¾¾® + СО2 + 2Н2О

СН2—СН3 CООН

п-фталевая кислота

Как видно из приведенных уравнений, по числу и взаимному положению карбоксильных групп, в образующихся кислотах можно судить о числе и взаимном расположении боковых целей в окисляемом ароматическом соединении.

Способы получения ароматических углеводородов ряда бензола

Важнейшие методы синтеза

Ароматизация алициклических и ациклических углеводородов. Бензол может быть получен из циклогексана путем каталитического отщепления от последнего водорода (реакция дегидрирования; Н.Д.Зелинский, 1911). В качествен катализаторов применяют Pt, Pd и др.

СН2 CH