Контрольная работа
Выполнила ст. гр. БУЗС-111 Пушнина И.Ю.
Белорусско-Российский университет
Режим работы ЭС
Под экспертной системой понимается система, объединяющая возможности компьютера со знаниями и опытом эксперта в такой форме, что система может предложить разумный совет или осуществить разумное решение поставленной задачи. Дополнительно желаемой характеристикой такой системы, которая многими рассматривается как основная, является способность системы пояснять по требованию ход своих рассуждений в понятной для спрашивающего форме.
Как правило, современная экспертная система содержит следующие компоненты
1) подсистему приобретения знаний;
2) базу знаний;
3) механизм вывода;
4) рабочую память;
5) интерфейс пользователя;
6) подсистему объяснения;
7) подсистему совершенствования вывода.
Среда разработки используется создателями ЭС для введения и представления экспертных знаний, а среда консультации доступна пользователям (не экспертам) для получения экспертных знаний и советов.
Приобретение знаний - это сбор, передача и преобразование опыта решения проблем из некоторых источников знаний в компьютерные программы при их создании или расширении (потенциальные источники знаний - люди-эксперты, учебники, базы данных, исследовательские отчеты, собственный опыт пользователей).
База знаний содержит два основных элемента - факты (данные) из предметной области и специальные эвристики или правила, которые управляют использованием фактов при решении проблем.
Механизм вывода - управляющая структура ЭС. Известна также как интерпретатор правил (в ЭС, основанных на правилах). Это компьютерная программа, управляющая использованием системных знаний посредством формирования и организации последовательности шагов, предпринимаемых для решения проблемы (так называемой “повестки”).
Составляющие механизма вывода:
1) интерпретатор (обычно интерпретатор правил) выполняет выбранную повестку, применяя соответствующие правила из базы знаний;
2) планировщик управляет процессом выполнения повестки, оценивая эффект применения различных правил с точки зрения приоритетов или других критериев.
Рабочая память служит для хранения данных, полученных от пользователя, и промежуточных данных, выведенных в ходе работы системы.
Интерфейс пользователя. Экспертные системы содержат лингвистический процессор для дружественного, проблемно-ориентированного общения между пользователем и компьютером (лингвистический процессор преобразует входные данные, представленные на ограниченном естественном языке - русском, английском - в представление на внутреннем языке системы и обратно - сообщения системы на внутреннем языке в сообщения на ограниченном естественном). Общение это может сопровождаться графикой и многооконным меню.
Подсистема объяснения сообщает, почему и как программа вывода обрабатывает тот или иной символ. Обычно объяснительный блок сообщает следующее: как правила используют информацию пользователя, почему использовались (не использовались) данные правила, какие были сделаны выводы.
Совершенствование вывода. Люди-эксперты могут анализировать свою собственную работу, опыт, знания и улучшать их. Аналогичная способность необходима и для ЭС, чтобы она была способна анализировать причины своего успеха или неудачи. Это приведет к улучшению представления знаний в базе знаний и совершенствованию логического вывода.
В процессе решения задачи ЭС запрашивает у пользователя факты, касающиеся конкретной ситуации (проблемы). Получив ответы, ЭС пытается вывести заключение (рекомендацию). Эта попытка выполняется механизмом вывода, решающим, какая стратегия эвристического поиска должна быть использована применительно к данной проблеме. Пользователь может запросить объяснение поведения ЭС и объяснение ее заключений. Качество вывода определяется методом, выбранным для представления знаний, объемом базы знаний и мощностью механизма вывода.
Экспертная система работает в двух режимах: приобретения знаний и решения задач (режим консультации или режим использования ЭС).
В режиме приобретения знании общение с ЭС осуществляет эксперт через посредничество инженера по знаниям. Эксперт описывает проблемную область в виде совокупности данных и правил. Данные определяют объекты, их характеристики и значения, существующие в области экспертизы. Правила определяют способы манипулирования данными, характерные для рассматриваемой проблемной области. Эксперт, используя компонент приобретения знаний, наполняет систему знаниями, которые позволяют ЭС в режиме решения самостоятельно (без эксперта) решать задачи из проблемной области.
Отметим, что режиму приобретения знаний при традиционном подходе к разработке программ соответствуют этапы алгоритмизации, программирования и отладки, выполняемые программистом. Таким образом, в отличие от традиционного подхода разработку программ осуществляет эксперт (с помощью ЭС), не владеющий программированием, а не программист.
В режиме консультации общение с ЭС осуществляет конечный пользователь, которого интересует результат и (или) способ получения решения.
После обработки данные поступают в рабочую память. На основе входных данных из рабочей памяти, общих данных о проблемной области и правил из БЗ решатель (интерпретатор) формирует решение задачи.
В отличие от традиционных программ ЭС в режиме решения задачи не только исполняет предписанную последовательность операций, но и предварительно формирует ее. Если ответ ЭС не понятен пользователю, то он может потребовать объяснения, как ответ получен. Для этого предназначена объяснительная компонента.
2.Понятие и архитектура РаБД. Стратегии распределения данных в РаБД.
5.1. Понятие и архитектура распределенной БД
Распределенная БД (РаБД) – набор логически связанных между собой разделяемых данных и их описаний, которые физически распределены по нескольким компьютерам (узлам) в некоторой компьютерной сети.
Каждая таблица в РАБД может быть разделена на некоторое количество частей, называемых фрагментами. Фрагменты могут быть горизонтальными, вертикальными и смешанными. Горизонтальные фрагменты представляют собой подмножества строк, а вертикальные – подмножества столбцов. Фрагменты распределяются на одном или нескольких узлах.
С целью улучшения доступности данных и повышения производительности системы для отдельных фрагментов может быть организована репликация – поддержка актуальной копии некоторого фрагмента на нескольких различных узлах. Репликаты – множество различных физических копий некоторого объекта БД, для которых в соответствии с определенными в БД правилами поддерживается синхронизация с некоторой «главной копией».
Существуют несколько альтернативных стратегий размещения данных в системе: раздельное (фрагментированное) размещение, размещение с полной репликацией и размещение с выборочной репликацией.
Раздельное (фрагментированное) размещение. В этом случае БД разбивается на непересекающиеся фрагменты, каждый из которых размещается на одном из узлов системы. При отсутствии репликации стоимость хранения данных будет минимальна, но при этом будет невысок также уровень надежности и доступности данных в системе. Отказ на любом из узлов вызовет утрату доступа только к той части данных, которая на нем хранилась.
Размещение с полной репликацией. Эта стратегия предусматривает размещение полной копии всей БД на каждом из узлов системы. Следовательно, надежность и доступность данных, а также уровень производительности системы будут максимальными. Однако стоимость хранения данных и уровень затрат на передачу данных в этом случае будут самыми высокими.
Размещение с выборочной репликацией. Данная стратегия представляет собой комбинацию методов фрагментации, репликации и централизации. Одни массивы данных разделяются на фрагменты, тогда как другие подвергаются репликации. Все остальные данные хранятся централизованно. Целью применения данного метода является объединение всех преимуществ, существующих в остальных моделях, с одновременным исключением свойственных им недостатков. Благодаря своей гибкости, именно эта стратегия используется чаще всего.
Существует четыре альтернативные стратегии распределения данных:
1.Централизация (единственная копия базы данных, расположенная в одном узле).
2.Расчленение (единственная копия базы данных, непересекающиеся подмножества распределены по различным узлам).
3.Дублирование (несколько копий базы данных, в каждом узле располагается полная копия всех данных).
4.Смешанная (несколько копий подмножеств базы данных, в каждом узле может содержаться произвольный фрагмент базы данных).
Система управления распределенными базами данных, допускающая лишь централизованное распределение, является простейшей, а система, допускающая смешанное распределение данных, - наиболее сложной. Стратегии расчленения и дублирования являются в различной степени более сложными, чем централизованная. Стратегия расчленения предполагает наличие лишь одной копии базы данных, но при этом необходимо знать, какая часть базы данных расположена в каждом узле. Стратегия дублирования предполагает наличие в каждом узле полной копии базы данных, причем все копии должны обслуживаться согласовано для обеспечения их полноты и целостности. Смешанная стратегия сочетает сложности двух других распределенных стратегий, приобретая при этом гибкость и достоинства обеих стратегий. Для систем управления распределенными базами данных может потребоваться следить за изменением состояний копий каждого подмножества базы данных, а также за размещением каждой копии.
Рассмотрим преимущества и недостатки всех стратегий распределения данных, а также типичные ситуации, когда каждая из этих стратегий является наиболее подходящей.