Смекни!
smekni.com

Архитектура и производительность серверных ЦП (стр. 2 из 13)

Иерархическая модель кэш-памяти

Как правило, кэш-память имеет многоуровневую архитектуру. Например, в компьютере с 32 Кбайт внутренней (в ядре ЦП) и 1 Мбайт внешней (в корпусе ЦП или на системной плате) кэш-памяти первая будет считаться кэш-памятью 1-го уровня (L1), а вторая — кэш-памятью 2-го уровня (L2). В современных серверных системах количество уровней кэш-памяти может доходить до четырех, хотя наиболее часто используется двух- или трехуровневая схема.

В некоторых процессорных архитектурах кэш-память 1-го уровня разделена на кэш команд (Irstruction Cache, I-cache) и кэш данных (Data Cache, D-cache), причем необязательно одинаковых размеров. С точки зрения схемотехники проще и дешевле проектировать раздельные I-cache и D-cache: выборку команд проводит 1-bох, а выборку данных — Е-box и F-box, хотя в обоих случаях задействуются А-box и С-box. Все эти блоки велики, и обеспечить им одновременный и быстрый доступ к одному кэшу проблематично. Кроме того, это неизбежно потребовало бы увеличения количества портов доступа, что также усложняет задачу проектирования.

Так как I-cache и D-cache должны обеспечивать очень низкие задержки при доступе (это справедливо для любого кэша L1), приходится жертвовать их объемом — обычно он составляет от 16 до 32 Кбайт. Ведь чем меньше размер кэша, тем легче добиться низких задержек при доступе.

Кэш-память 2-го уровня, как правило, унифицирована, т. е. может содержать как команды, так и данные. Если она встроена в ядро ЦП, то говорят о S-cache (Secondary Cache, вторичный кэш), в противном случае — о B-cache (Backup Cache, резервный кэш). В современных серверных ЦП объем S-cache составляет от одного до нескольких мегабайт, a B-cache — до 64 Мбайт. Если дизайн ЦП предусматривает наличие встроенной кэш-памяти 3-го уровня, то ее именуют T-cache (Ternary Cache, третичный кэш). Как правило, каждый последующий уровень кэш-памяти медленнее, но больше предыдущего по объему. Если в системе присутствует B-cache (как последний уровень модели кэш-памяти), то он может контролироваться как ЦП, так и набором системной логики.

Если в момент выполнения некоторой команды в регистрах не окажется данных для нее, то они будут затребованы из ближайшего уровня кэш-памяти, т. е. из D-cache. В случае их отсутствия в D-Cache запрос направляется в S-cache и т. д. В худшем случае данные будут доставлены непосредственно из памяти. Впрочем, возможен и еще более печальный вариант, когда подсистема управления виртуальной памятью операционной системы (ОС) успевает вытеснить их в файл подкачки на жесткий диск. В случае доставки из оперативной памяти потери времени на получение нужных данных могут составлять от десятков до сотен тактов ЦП, а в случае нахождения данных на жестком диске речь уже может идти о миллионах тактов.

Ассоциативность кэш-памяти

Одна из фундаментальных характеристик кэш-памяти — уровень ассоциативности — отображает ее логическую сегментацию. Дело в том, что последовательный перебор всех строк кэша в поисках необходимых данных потребовал бы десятков тактов и свел бы на нет весь выигрыш от использования встроенной в ЦП памяти. Поэтому ячейки ОЗУ жестко привязываются к строкам кэш-памяти (в каждой строке могут быть данные из фиксированного набора адресов), что значительно сокращает время поиска. С каждой ячейкой ОЗУ может быть связано более одной строки кэш-памяти: например, n-канальная ассоциативность (n-way set associative) обозначает, что информация по некоторому адресу оперативной памяти может храниться в n мест кэш-памяти.

Выбор места может проводиться по различным алгоритмам, среди которых чаще всего используются принципы замещения LRU (Least Recently Used, замещается запись, запрошенная в последний раз наиболее давно) и LFU (Least Frequently Used, запись, наименее часто запрашиваемая), хотя существуют и модификации этих принципов. Например, полностью ассоциативная кэшпамять (fully associative), в которой информация, находящаяся по произвольному адресу в оперативной памяти, может быть размещена в произвольной строке. Другой вариант — прямое отображение (direct mapping), при котором информация, которая находится по произвольному адресу в оперативной памяти, может быть размещена только в одном месте кэш-памяти. Естественно, этот вариант обеспечивает наибольшее быстродействие, так как при проверке наличия информации контроллеру придется «заглянуть» лишь в одну строку кэша, но и наименее эффективен, поскольку при записи контроллер не будет выбирать «оптимальное» место. При одинаковом объеме кэша схема с полной ассоциативностью будет наименее быстрой, но наиболее эффективной.

Полностью ассоциативный кэш встречается на практике, но, как правило, у него очень небольшой объем. Например, в ЦП Cyrix 6x86 использовалось 256 байт такого кэша для команд перед унифицированным 16-или 64-Кбайт кэшем L1. Часто полноассоциативную схему применяют при проектировании TLB (о них будет рассказано ниже), кэшей адресов переходов, буферов чтения-записи и т. д. Как правило, уровни ассоциативности I-cache и D-cache довольно низки (до четырех каналов) — их увеличение нецелесообразно, поскольку приводит к увеличению задержек доступа и в итоге негативно отражается на производительности. В качестве некоторой компенсации увеличивают ассоциативность S-cache (обычно до 16 каналов), так как задержки при доступе к этому кэшу неважны. Например, согласно результатам исследований часто используемых целочисленных задач, у Intel Pentium III 16 Кбайт четырехканального D-cache было достаточно для покрытия около 93% запросов, а 16-Кбайт четырехканального I-cache — 99% запросов.

Размер строки и тега кэш-памяти

Немаловажная характеристика кэш-памяти — размер строки. Как правило, на одну строку полагается одна запись адреса (так называемый тег), которая указывает, какому адресу в оперативной памяти соответствует данная линия. Очевидно, что нумерация отдельных байтов нецелесообразна, поскольку в этом случае объем служебной информации в кэше в несколько раз превысит объем самих данных. Поэтому один тег обычно полагается на одну строку, размер которой обычно 32 или 64 байта (реально существующий максимум 1024 байта), и эквивалентен четырем (иногда восьми) разрядностям системной шины данных. Кроме того, каждая строка кэш-памяти сопровождается некоторой информацией для обеспечения отказоустойчивости: одним или несколькими битами контроля четности (parity) или восемью и более байтами обнаружения и коррекции ошибок (ЕСС, Error Checking and Correcting), хотя в массовых решениях часто не используют ни того, ни другого.

Размер тега кэш-памяти зависит от трех основных факторов: объема кэш-памяти, максимального кэшируемого объема оперативной памяти, а также ассоциативности кэш-памяти. Математически этот размер рассчитывается по формуле

Smg — размер одного тега кэш-памяти, в битах; Smem — максимальный кэшируемый объем оперативной памяти, в байтах; Scache — объем кэш-памяти, в байтах; А — ассоциативность кэш-памяти, в каналах.

Отсюда следует, что для системы с 1-Гбайт оперативной памятью и 1-Мбайт кэш-памятью с двухканальной ассоциативностью потребуется 11 бит для каждого тега. Примечательно, что собственно размер строки кэш-памяти никак не влияет на размер тега, но обратно пропорционально влияет на количество тегов. Следует понимать, что размер строки кэш-памяти не имеет смысла делать меньше разрядности системной шины данных, но многократное увеличение размера приведет к чрезмерному засорению кэш-памяти ненужной информацией и излишней нагрузке на системную шину и шину памяти. Кроме того, максимально кэшируемый объем кэш-памяти не обязан соответствовать максимально возможному устанавливаемому объему оперативной памяти в системе. Если возникнет ситуация, когда оперативной памяти окажется больше, чем может быть кэшировано, то в кэш-памяти будет присутствовать информация только из нижнего сегмента оперативной памяти. Именно такой была ситуация с платформой Socket7/Super7. Наборы микросхем для этой платформы позволяли использовать большие объемы оперативной памяти (от 256 Мбайт до 1 Гбайт), в то время как кэшируемый объем часто был ограничен первыми 64 Мбайт (речь идет о B-cache, находящемся на системной плате) по причине использования дешевых 8-бит микросхем теговой SRAM (2 бита из которых резервировалось под указатели действительности и измененности строки). Это приводило к ощутимому падению производительности.

Какая информация содержится в тегах кэш-памяти? Это информация об адресах, но как можно точно отобразить расположение строки кэш-памяти на всем пространстве кэшируемого объема оперативной памяти, используя столь незначительное количество адресных битов? Это понятие является фундаментальным в понимании принципов функционирования кэш-памяти.

Рассмотрим предыдущий пример, с 11-бит тегами. Учитывая логическое сегментирование благодаря двухканальной ассоциативности, можно рассматривать данную кэш-память как состоящую из двух независимых сегментов по 512 Кбайт каждый. Представим оперативную память как состоящую из «страниц» по 512 Кбайт каждая — их будет соответственно 2048 штук. Далее, log2 (2048) - 11 (основание логарифма равно 2, так как возможны только два логических состояния каждого бита). Это означает, что фактически тег — не номер отдельной строки кэш-памяти, а номер «страницы» памяти, на которую отображается та или иная строка. Другими словами, в пределах «страницы» сохраняется прямое соответствие ее «строк» с соответствующими строками кэш-памяти, т. е. п-я строка кэш-памяти соответствует п-й «строке» данной «страницы» оперативной памяти.