Развитие кластерных систем (КС) в России
Кластер — это модульная многопроцессорная система, созданная на базе стандартных вычислительных узлов, соединенных высокоскоростной коммуникационной средой. Сейчас слова «кластер» и «суперкомпьютер» в значительной степени синонимы, но прежде чем об этом стало можно с уверенностью говорить, аппаратные средства прошли длительный цикл эволюции. В течение первых 30 лет с момента появления компьютеров, вплоть до середины 1980-х гг., под «суперкомпьютерными» технологиями понимали исключительно производство специализированных особо мощных процессоров. Однако появление однокристального микропроцессора практически стерло разницу между «массовыми» и «особо мощными» процессорами, и с этого момента единственным способом создания суперкомпьютера стал путь объединения процессоров для параллельного решения одной задачи. Алексей Лацис, один из создателей российского суперкомпьютера МВС-1000М, в своей книге «Как построить и использовать суперкомпьютер» называет это «первой суперкомпьютерной революцией».
Примерно до середины 1990-х гг. основное направление развития суперкомпьютерных технологий было связано с построением специализированных многопроцессорных систем из массовых микросхем. Один из сформировавшихся подходов — SMP (Symmetric Multi Processing), подразумевал объединение многих процессоров с использованием общей памяти, что сильно облегчало программирование, но предъявляло высокие требования к самой памяти. Сохранить быстродействие таких систем при увеличении количества узлов до десятков было практически невозможно. Кроме того, этот подход оказался самым дорогим в аппаратной реализации. На порядок более дешевым и практически бесконечно масштабируемым оказался способ МРР (Massively Parallel Processing), при котором независимые специализированные вычислительные модули объединялись специализированными каналами связи, причем и те и другие создавались под конкретный суперкомпьютер и ни в каких других целях не применялись.
Идея создания так называемого кластера рабочих станций фактически явилась развитием метода МРР, ведь логически МРР-система не сильно отличалась от обычной локальной сети. Локальная сеть стандартных персональных компьютеров, при соответствующем ПО использовавшаяся как многопроцессорный суперкомпьютер, и стала прародительницей современного кластера. Эта идея получила более совершенное воплощение в середине 1990-х гг., когда благодаря повсеместному оснащению ПК высокоскоростной шиной PCI и появлению дешевой, но быстрой сети. Fast Ethernet кластеры стали догонять специализированные МРР-системы по коммуникационным возможностям. Это означало, что полноценную МРР-систему можно было создать из стандартных серийных компьютеров при помощи серийных коммуникационных технологий, причем такая система обходилась дешевле в среднем на два порядка.
Вот самые знаменитые суперкомпьютеры с кластерной архитектурой «первого поколения»: Beowulf (1994, NASA Goddard Space Flight Center) — 16-процессор-ный кластер на процессорах Intel 486DX4/100 МГц; Avalon (1998, Лос-Аламосская национальная лаборатория) — Linux-кластер на базе процессоров Alpha 21164А/533 МГц. Первоначально Avalon состоял из 68 процессоров, затем их число увеличилось до 140; его производительность на тесте LINPACK 48,6 GFlops* позволила ему занять 113-е место в 12-й редакции рейтинга самых мощных компьютеров мира Тор500 рядом со 152-процессорной SMP-системой IBM RS/6000 SP. Первой отечественной системой, вошедшей в ТорбОО, стал кластер МВС-1000М, изготовленный НИИ «КВАНТ» и Институтом прикладной математики Российской академии наук. Он состоял из 384 узлов на базе процессоров Alpha 21164 компании DEC-Compaq.
* Flops (floating point operations per second) — количество операций с плавающей точкой в секунду, единица измерения производительности суперкомпьютеров. GFlops (гигафлопс) — миллиард операций с плавающей точкой в секунду; TFlops (терафлопс) — триллион операций с плавающей точкой в секунду. Реальная производительность самого мощного на сегодня суперкомпьютера превышает 136 TFlops; всего год назад этот показатель составлял 35 TFlops.
Различают пиковую и реальную производительность суперкомпьютеров. Пиковая производительность многопроцессорной системы (кластера, SMP-системы и т. д.) — теоретическое значение, недостижимое на практике. Оно получается умножением пиковой производительности процессора на число процессоров в системе. Пиковая производительность ЦП в общем случае получается путем умножения его тактовой частоты на максимальное число операций, выполняемых за один такт. Реальная производительность кластера — это производительность, полученная при решении реальной задачи (академической или промышленной). Например, системы в рейтинге Тор500 ранжируются по результатам теста LINPACK — реальной академической задачи на решение системы линейных уравнений.
Новый мощный толчок развитию кластерных технологий, помимо появления более совершенных коммуникационных сетей, дал быстрый рост производительности вновь выпускаемых массовых процессоров, что сделало высокопроизводительные решения доступными как никогда. Например, «СКИФ К-500», второй отечественный кластер, вошедший в ТорбОО, построен на базе 128 процессоров Intel Xeon и системной сети SCI. Построенный осенью 2003 г. для российско-белорусской государственной суперкомпьютерной программы «СКИФ», этот кластер занял в рейтинге 407-е место с реальной производительностью в 423,6 GFlops. Второй «топовый» кластер государственной программы, «СКИФ К-1000» на базе 576 процессоров AMD Opteron и системной сети InfiniBand, появился в октябре 2004 г. и вошел в первую сотню Тор500 с реальной производительностью 2,032 TFlops. Оба кластера «СКИФ», установленных в Белоруссии, построены компанией «Т-Платформы» с участием ИПС РАН и белорусских партнеров и используют российские суперкомпьютерные технологии. Самый мощный на данный момент кластер на территории России — МВС 15000БМ с реальной производительностью более 5,3 Tflops, он занимает 56-е место в Тор500 и установлен в Межведомственном суперкомпьютерном центре (МСЦ РАН). Кластер построен из вычислительных узлов компании IBM на базе процессоров PowerPC и системной сети Myrinet.
Бурное развитие кластерных технологий за последние годы хорошо видно из анализа списка Тор500: с 2000 по 2004 г. доля кластеров в списке увеличилась с 2,2 до 60,8%. Если в 2000 г. в числе 40 самых мощных установок присутствовало лишь два кластера (самый мощный — 31-е место), то к 2004 г. их число среди первых 40 машин составило 24). При этом, по данным последней редакции Тор500, более 71,5% процессоров, использованных для ерздания суперкомпьютеров, — это массово выпускаемые процессоры компаниями Intel и AMD.
Кластерные технологии применяются и в новейших суперкомпьютерных разработках ведущих изготовителей: например, в самом мощном на сегодня суперкомпьютере IBM BlueGene/L с производительностью более 136 TFlops использованы многие элементы кластерной архитектуры.
Сфера применения кластерных систем сейчас нисколько не уже, чем суперкомпьютеров с другой архитектурой: они не менее успешно справляются с задачей моделирования самых разных процессов и явлений. Суперкомпьютерное моделирование может во много раз удешевить и ускорить вывод на рынок новых продуктов, а также улучшить их качество. Например, вместо того чтобы строить дорогостоящие тестовые модели новых автомобилей, чтобы затем разбить их об стенку ради проведения инженерных расчетов, можно быстрее и точнее все посчитать на компьютерных моделях. Благодаря этому многим западным автомобильным концернам удалось сократить срок разработки новой модели автомобиля в пять раз — с 10 до 2 лет. Компьютерная обработка геофизических данных позволяет создавать высокодетализированные модели нефтяных и газовых месторождений, обеспечивая более эффективную, безопасную и дешевую разработку скважин.
Именно развитие кластерных технологий сделало высокопроизводительные вычисления широко доступными и позволило самым разным предприятиям воспользоваться их преимуществами. Вот как распределяются области применения 500 самых мощных компьютеров мира: 44,3% — добывающая, электронная, автомобильная, авиационная и др. отрасли тяжелой промышленности и машиностроения, чуть более 20% — наука и образование, суперкомпьютерные центры. Более 18% приходится на погодные и климатические исследования, 7% — ядерные, космические, энергетические и военные государственные программы, 3,5% — финансовые компании и банки. Кроме того, в списке есть компании и организации, занимающиеся медициной и разработкой новых лекарств, компьютерной графикой, перевозками, торговлей, производством продуктов питания, консалтингом и государственным управлением.
Что касается использования суперкомпьютеров в России, то в текущем рейтинге суперкомпьютеров СНГ Тор50, впервые изданном в декабре 2004 г., представлены только три класса пользователей: научные институты и университеты, предприятия, занятые в тяжелой и нефтедобывающей промышленности, а также финансовые структуры.
В среднем отечественные суперкомпьютеры пока еще сильно уступают западным по производительности: машины, используемые для научных исследований, в 15 раз, вычислительные ресурсы финансовых компаний — в 10 раз, промышленные суперкомпьютеры — в 9 раз. Однако уже вторая редакция списка Тор50, опубликованная в апреле 2005 г., демонстрирует быстрое развитие отрасли. Так, количество систем, работающих в промышленной сфере, увеличилось с 2 до 16%, причем их средняя производительность выросла сразу на 135%. Число суперкомпьютеров финансовых компаний и банков также возросло с 2 до 18%. Доля суперкомпьютеров, используемых для научных исследований, сократилась с 96 до 66%, а их средняя производительность выросла на 70%. В целом вторая редакция отечественного суперкомпьютерного рейтинга демонстрирует существенный рост доли систем коммерческого использования. Самое большое количество отечественных суперкомпьютеров поставлено фирмой IBM (26%), но российские изготовители лишь немного уступают ей.