Задача 3. Оптимизация ступенчатого испарения в барабанном котле. Ниже представлен протокол решения средствами символьной математики Mathcad задачи об оптимальном парораспределении в барабане котла со ступенчатым испарением. Рассматривается трехступенчатое испарение: необходимо определить доли пара, генерируемые в первом (переменная x) и втором (y) отсеках, при которых концентрация примеси в паре, выходящем из котла, была бы минимальна.
Исходные данные расчета (см. п. 1): величина продувки из котла (переменная Пр), суммарные коэффициенты выноса примеси по отсекам (отношение концентрации примеси в паре к концентрации примеси в котловой воде – Kp) и концентрация примеси в питательной воде (Cв – формальный параметр, не влияющий на результат, но участвующий в промежуточных выкладках).
Ключевое место расчета – аналитическое формирование функции Cп(x, y), возвращающей концентрацию пара в зависимости от парораспределения в отсеках:
Формируется функция Cп(x, y) с помощью оператора символьных преобразований: ■ ■ ®, где первый операнд – это преобразуемое выражение, а второй – ключевое слово (или вертикальная цепочка ключевых слов), задающее направление преобразования (решение уравнения или системы как в задаче 3, упрощение выражения, раскрытие скобок, факторизация и т.д.). Данные операторы вводятся через нажатие соответствующих кнопок панели символьных преобразований.
В задаче 3 в п. 2 аналитически решаются относительно отмеченной переменной (параметр ключевого слова solve) составленные пользователем уравнения материального баланса примеси по отсекам: поступающая в отсек примесь (произведение концентрации на расход воды) частично уносится с паром, остальная часть продувается в соседний отсек. Возможное отложение примеси на внутренних поверхностях котла, равно как и вымывание примеси с поверхностей котла, в расчете не учитывается. Решения упрощаются (simplify) без вывода промежуточного результата и вручную (с некоторой модификацией) переносятся пользователем в оператор задания функции Св1(x) := ■. Так формируются три функции с именами Свi, где i – номер отсека. После этого по уравнению материального баланса составляется целевая функция Cп(x, y).
Поиск минимума функции Cп(x, y) предваряется ее графическим анализом (п. 3):
График линий уровня показывает, что при x~ 0.9 и y~ 0.1 находится минимум, который уточняется (п. 4.1) через аналитическое решение системы двух алгебраических уравнений, составленных из частных производных функции Cп(x, y) и приравненных к нулю. Система Mathcad выдала восемь решений – координаты точек, где обе частные производные функции Cп(x, y) равны нулю (это могут быть минимумы, максимумы, седла). Один из корней системы (x = 0.891, y= 0.0912) – решение оптимизационной задачи.
[1][1] В Mathcad-документ в качестве комментариев могут вноситься не только тексты, комментирующие расчет,но и рисунки. В частности, расчет КПД проиллюстрирован схемой цикла и его T-s диаграммой.