Смекни!
smekni.com

Методы снижения помех в RadioEthernet-сетях (стр. 2 из 2)

Рис. 3. Внешний вид перестраиваемого узкополосного высокочастотного фильтра-грозоразрядника на периодических структурах

Если же в фильтре имеется возможность выполнять внешнюю настройку каждого резонатора, количество которых может быть 6...10 и больше (рис.3), то качественная и долговечная герметизация требует более тщательного подхода к этому процессу ввиду значительного количества точек герметизации. Зато в этом случае после изготовления фильтра есть возможность получения необходимых оптимальных параметров (минимальные прямые потери, требуемая ширина полосы пропускания, максимальное внеполосное подавление) путем его тщательной окончательной настройки. Такие фильтры, при отсутствии герметизации, необходимо устанавливать в помещение, хотя, как правило, это не является недостатком. Более того, в случае самостоятельного применения фильтра (без использования усилителя) его внутренняя установка является обязательным требованием. Не следует забывать о том, что конструкция высокочастотных фильтров, работающих в диапазоне 2,45ГГц, позволяет им дополнительно выполнять функцию грозозащиты. А устройства грозозащиты, как известно, рекомендуется устанавливать и заземлять уже на спуске коаксиального кабеля в помещении возле имеющихся линий заземления радиооборудования. Схема подключения фильтра-грозоразрядника при его внутренней установке показана на рис.4а. В этом случае оборудование будет защищено не только от остаточных импульсов разряда в антенне, но и от статических наводок в самом кабеле снижения. Наконец, при внутренней установке фильтров значительно увеличивается срок их службы, и производитель может позволить себе расширить гарантийные обязательства. При внешнем же использовании даже герметичных фильтров сложно гарантировать их длительную эксплуатацию.

Рис. 4. Схемы установки высокочастотного фильтра: а) без усилителя; б) с усилителем

При необходимости совместного использования ВЧ-фильтра с усилителем следует либо приобретать фильтр в герметичном исполнении, либо размещать его вместе с усилителем в герметичном термобоксе с последующей установкой и заземлением бокса на мачте в непосредственной близости к антенне, как показано на рис.4б. В этом случае для обеспечения надежной защиты оборудования от грозовых разрядов рекомендуется устанавливать дополнительное грозозащитное устройство в помещении возле радиооборудования и имеющихся линий контура заземления. Внешний вид такого устройства показан на рис.5.

Рис. 5. Внешний вид устройства грозозащиты

Для обеспечения возможности перестройки аппаратуры провайдера с одного канала на другой вместо одноканального высокочастотного фильтра необходимо устанавливать фильтр с широкой полосой пропускания, равной суммарной ширине рабочей полосы провайдера с учетом диапазона перестройки. Возможна также параллельная установка нескольких смежно-настроенных фильтров с поочередным их подключением в процессе перестройки.

До сих пор речь шла об использовании высокочастотных фильтров с шириной полосы пропускания, равной или больше ширины полосы одного DSSS-канала (≥22МГц). При этом предполагалось наличие помехи только вне этой полосы, например, от сигналов в соседних не перекрывающихся каналах или же от мощных источников излучения вне диапазона RadioEthernet. Но как быть с помехами, расположенными в самой полосе канала, и чем при этом может помочь фильтрация полезного сигнала с помощью узкополосных фильтров?

Известно, что при достаточно большом расстоянии между базовыми станциями операторов сетей передачи данных, а также при сравнительно низкой мощности их передатчиков возможно использование операторами одного региона (города) соседних, перекрывающихся по спектру, каналов связи. Однако, наблюдающееся в последнее время массовое использование базовых и абонентских усилителей, погоня за повышением мощности излучения полезного сигнала, с целью выделения его на фоне помех и увеличения дальности связи, привели к ситуации, когда излучения даже удаленных базовых станций провайдеров стали создавать помехи друг другу. Изменение поляризации сигнала некоторыми провайдерами, в общем, не решило этой проблемы. Каждый раз подобные действия по уходу от помех вызывают цепную реакцию: все устанавливают более мощные усилители, либо изменяют поляризацию, а эффект оказывается нулевым. Новые витки погони за качеством связи посредством увеличения мощности усилителей недопустимы и способны еще больше усугубить ситуацию. Выяснение отношений, перекраивание карты местности с делением зон покрытия и распределением абонентов между провайдерами тоже особого удовольствия не приносят.

Выход из подобной ситуации возможен посредством снижения уровня помех в рабочей полосе провайдера. Снизить помехи позволяет использование узкополосных высокочастотных режекторных или полосно-пропускающих фильтров с шириной полосы пропускания меньше 22МГц. Их применение возможно благодаря существующей избыточности данных передаваемых в RadioEthernet-сетях.

Как известно, избыточность в системах с технологией DSSS вызвана 11-кратным кодированием каждого бита исходных данных кодом Баркера. Она обеспечивает базу передаваемого шумоподобного сигнала равной 11 и, соответственно, расширяя полосу частот исходного информационного сигнала в 11 раз. В связи с этим возникает вопрос о возможности вырезания из спектра полезного входного сигнала мощной узкополосной помехи с помощью узкополосного режекторного фильтра, настроенного на эту помеху. После установки такого фильтра вместе с помехой будет вырезаться и часть полезного сигнала. Однако передаваемые данные должны быть полностью восстановлены коррелятором приемника ввиду имеющейся избыточности.

Как недостаток такого подхода можно отметить сложность технической реализации в этом диапазоне частот режекторных фильтров с узкой (≤5МГц) полосой режекции. К тому же положение помехи на частотной сетке может со временем измениться, в результате чего она может выйти из зоны режекции. Не исключено также появления новой помехи, опять же, вне зоны режекции установленного фильтра.

Второй подход предполагает использование полосно-пропускающих фильтров с шириной полосы пропускания меньше 22МГц, настроенных на пропускание с минимальными потерями центральной части спектра передаваемого шумоподобного сигнала, где сосредоточено около 90% его спектральной мощности. При этом боковые составляющие спектра могут быть частично или полностью подавлены вместе с действующей помехой. На какое именно значение ширины полосы пропускания настроить ВЧ-фильтр, и как эту полосу разместить относительно несущей полезного сигнала (симметрично или несимметрично), будет зависеть от положения помехи и установленной скорости передачи данных. Расчеты показывают, что при скорости передачи данных 1...2Мбит/с допустимо использование узкополосного ВЧ-фильтра с шириной полосы пропускания 10...14МГц, который способен пропустить основную мощность излучения (основной пик спектра сигнала). При этом полное подавление боковых составляющих спектра, в которых сосредоточены оставшиеся 10% спектральной мощности излучения, приводит к незначительному искажению формы принимаемого сигнала и практически не влияет на качество передачи данных.

Перед использованием высокочастотного узкополосного фильтра по возможности необходимо установить, что представляет собой источник помех, каково его расположение в частотной сетке относительно рабочих частот провайдера. Это можно осуществить путем сканирования исследуемого диапазона частот с использованием соответствующего оборудования. При этом важно выяснить: не расположена ли несущая частота мешающего сигнала в центральной части (основном пике спектра) рабочей полосы частот действующего оборудования. Если нет, то провайдер получит максимальный эффект от использования фильтра, сообщив производителю всю необходимую частотную информацию для изготовления изделия с требуемыми параметрами. Но даже в том случае, когда часть широкополосной помехи находится в рабочей полосе оборудования провайдера и все же попадает на вход приемника, сужение полосы частот входного сигнала с помощью узкополосного фильтра снижает общую суммарную мощность действующих помех в приемном тракте радиооборудования, что уменьшает вероятность стопорения системы и, соответственно, увеличивает надежность и скорость передачи данных. Во многих случаях применение только высокочастотного фильтра сразу дает положительный эффект. Таким образом, провайдеру удается решить задачу снижения уровня помех, повысить качество предоставляемых услуг и улучшить статистику отзывов о своей работе с минимальными материальными затратами.

В заключение следует отметить, что применение узкополосных фильтров в приемо-передающем тракте кроме подавления помех способствует также и решению обратной задачи – снижению собственных шумов действующего оборудования провайдера, улучшая тем самым качество связи в RadioEthernet-сетях других провайдеров работающих на соседних не перекрывающихся каналах. Этот эффект особенно заметен в случае использования мощных усилителей, способных кроме частот кратных несущей порождать множество интермодуляционных составляющих вблизи спектра излучения. Известен случай, когда работающий на 6-ом DSSS-канале провайдер отмечал значительное улучшение работы своей системы после установки высокочастотного фильтра с шириной полосы пропускания 25МГц на выходе усилителя мощностью 1Вт в первом DSSS-канале другого, рядом работающего провайдера. Таким образом, применение узкополосных высокочастотных фильтров способствует поддержанию принципа «не мешай другому», и они могут быть рекомендованы к использованию в случае наличия претензий к провайдеру со стороны других пользователей частотного ресурса, а также государственных инспектирующих органов по частотному надзору.