Смекни!
smekni.com

Анализ и оценка аппаратных средств современных ПЭВМ (стр. 4 из 8)

Соответствующий контроллер кэш-памяти должен заботиться о том, чтобы команды и данные, которые будут необходимы микропроцессору в определенный момент времени, оказывались в кэш-памяти именно к этому моменту. При некоторых обращениях к оперативной памяти соответствующие значения заносятся в кэш. В ходе последующих операций чтения по тем ке адресам памяти обращения происходят только к кэш-память, без затраты процессорного времени на ожидание, которое неизбежно при работе с основной динамической памятью. В персональных компьютерах технология использования кэш-памяти находит применение прежде всего при обмене данными между микропроцессором и оперативной памятью, а также между основной памятью и внешней (накопителями на магнитных носителях).

На кристалле микросхемы оперативной памяти SRАМ находится огромное количество транзисторов. Как уже говорилось, принщп работы ячейки динамической памяти состоит в сохранении ; заряда на крошечном конденсаторе, выполненном в полупроводниковой структуре кристалла. Понятно, что для того чтобы зарядить конденсатор до определенного значения, необходимо некоторое время. Чтобы конденсатор разрядился, также необходимо определенное время. Таким образом, в результате процессов заряда и разряда конденсатора ячейка памяти устанавливает либо в состояние 1, либо в состояние 0. Поскольку для заряда и разряда конденсатора необходимо вполне определенное (и немалое) время, то в этом и кроется причина ограниченного быстродействия динамической памяти.

Статическая же память основана на триггерах, в которых применяются интегральные транзисторы-переключатели. Такие транзисторы используют ключевой принцип работы: они либо закрыты, либо открыты. Конечно, на переход транзистора из одного состояния в другое также необходимо какое-то время, однако оно существенно меньше времени заряда-разряда конденсатора, выполняющего роль элемента памяти. Наряду с таким достоинством, как быстродействие по отношению к динамической памяти, статическая память имеет и недостатки. Она потребляет больший ток и имеет более сложную архитектуру -- на одну ячейку памяти требуется больше транзисторов. Как следствие этого, статическая память существенно дороже динамической. Кроме того, при одинаковом коэффициенте интеграции статическая память обладает значительно меньшей информационной емкостью.

При обмене данными возникает похожая проблема. Адреса данных, которые вскоре понадобятся процессору для обработки, находятся в большинстве случаев рядом с адресами данных, обрабатываемых непосредственно в данное время. Поэтому кэш-контроллер должен также заботиться о размещении всего блока данных в статической памяти.

Метод Write Through, называемый также методом сквозной записи, предполагает наличие двух копий данных — одной в основной памяти, а другой — в кэш-памяти. Каждый цикл записи процессора в память идет через кэш. Это обусловливает, конечно, высокую загрузку системной шины, так как на каждую операцию модификации данных приходится две операции записи. Поэтому каждое обновление содержимого кэш-памяти ощутимо сказывается на работе шины. С другой стороны, микропроцессор по-прежнему вынужден ожидать окончания записи в основную память.

Метод Buffered Write Through является разновидностью метода Write Through и называется также методом буферизованной сквозной записи. Для того чтобы как-то уменьшить загрузку шины, процесс записи выполняется в один или несколько буферов, которые работают по принципу FIFO (First Input-First Output). Таким образом, цикл записи для микропроцессора заканчивается практически мгновенно (т.е. когда данные записаны в буфер), хотя информация в основной памяти еще не сохранена. Сам же микропроцессор может выполнять дальнейшую обработку команд. Конечно, соответствующая логика управления должна заботиться о том, чтобы своевременно опустошать заполненные буферы. При использовании данного метода процессор полностью освобожден от работы с основной памятью.

При использовании метода Write Back, называемого также методом обратной записи, цикл записи микропроцессора происходит сначала в кэш-память, если там есть адрес приемника. Если адреса приемника в кэш-памяти не оказывается, то информация записывается непосредственно в память. Содержимое основной памяти обновляется только тогда, когда из кэш-памяти в нее записывается полный блок данных, называемый длиной строки-кэша (cache-line).

При работе с кэш-памятью применяется ассоциативный принцип, когда старшие разряды адреса используются в качестве признака, а младшие — для выбора слова. Архитектура кэш-памяти определяется тем, каким образом память отображается на кэш. Существуют три разновидности отображения: кэш-память с прямым отображением, частично ассоциативная и полностью ассоциативная. При прямом отображении каждая ячейка основной памяти может отображаться только на одну ячейку кэша, в частично ассоциативной —на две и больше (т.е., если одна ячейка кэша занята, можно использовать другую). В случае наличия четырех входов кэш-память называют 4-канальной частично ассоциативной, как, например, у i486. При полностью ассоциативном подходе в качестве разрядов признаков используются все адресные разряды.

BIOS и CMOS RAM

Базовая система ввода-вывода BIOS (Basic Input Output System) называется так потому, что включает в себя обширный набор программ ввода-вывода, благодаря которым операционная система и прикладные программы могут взаимодействовать с различными устройствами как Самого компьютера, так и с устройствами, подключенными к нему. Вообще говоря, в архитектуре IBM-совместимого компьютера система BIOS занимает особое место. С одной стороны, ее можно рассматривать, как составную часть аппаратных средств, с другой стороны, она является как бы одним из программных модулей операционной системы.

Заметим, что система BIOS, помимо программ взаимодействия с аппаратными средствами на физическом уровне, содержит программу тестирования при включении питание компьютера POST (Power-On-Self-Test) и программу начального загрузчика. Последняя программа необходима для загрузки операционной системы с соответствующего накопителя.

Система BIOS в IBM-совместимых компьютерах реализована в виде одной или двух микросхем, установленных на системной плате компьютера. Наиболее перспективным для хранения системы BIOS является сейчас флэш-память. BIOS на ее основе имеют, например, системные платы фирм Intel, Mylex, Compaq и т.д. Это позволяет легко модифицировать старые или добавлять дополнительные функции для поддержки новых устройств, подключаемых к компьютеру.

Поскольку содержимое ROM BIOS фирмы IBM было защищено авторским правом (т.е. его нельзя подвергать копированию), то большинство других производителей компьютеров вынуждены были использовать микросхемы BIOS независимых фирм, системы BIOS которых, разумеется, были практически полностью совместимы с оригиналом. Наиболее известны из этих фирм три: American Megatrends Inc. (AMI), Award Software и Phoenix Technologies.

CMOS RAM

Система BIOS в компьютерах, основанных на микропроцессорах i80286 и выше, неразрывно связана с неизменяемой памятью (CMOS RAM), в которой хранится информация о текущих показаниях часов, значение времени для будильника, конфигурации компьютера: количестве памяти, типах накопителей и т.д. Именно в этой информации нуждаются программные модули системы BIOS. Название CMOS RAM обязано тому, что эта память выполнена на основе структур КМОП (CMOS - Complementary Metal-Oxide-Semiconductor) которые, как известно, отличаются малым энергопотреблением.

В системе BIOS имеется программа, называемая Setup, которая может изменять содержимое CMOS-памяти. Вызывается эта программа определенной комбинацией клавиш, которая обычно выводится в качестве подсказки на экран монитора после включения питания компьютера. Во время загрузки компьютера можно запустить программу Setup для системы BIOS.

Напомним, что под обычными установками (Standard CMOS Setup) мы понимаем информация дате (месяц, день, год), текущих показаниях часов (часы, минуты, секунды), количестве стандартной и расширенной мяти (в килобайтах), технических параметрах и типе накопителей, дисплея, а также о подключении клавиатуры. Заме например, что если в этой программе в строке Keyboard сказать «Not Installed», то даже при отсутствии клавиатуры компьютер не выдаст сообщения об ошибке.

Расширенные установки (Advanced CMOS Setup и Advanced ChipSet Setup) включают в себя дополнительные возможности конфигурирования системной платы. Наиболее общими являются, например, такие возможности, как допустимая скорость ввода символов с клавиатурв (по умолчанию 15 символов в секунду), тестирование, тестирование памяти выше границы 1 Мбайт, разрешение использования арифметического сопроцессора Weitek, приоритет или последовательность загрузки (т.е. попытка загрузки компьютера сначала с накопителя со сменным, а затем несменным носителем или наоборот), установка определенной тактовой частоты микропроцессора при включении, разрешение парольной защиты и т.д. Как правило, расширенные установки допускают определение областей «теневой» (shadow) памяти для системной ROM BIOS, а также ROM BIOS видеоадаптеров, контроллеров накопителей и дополнительных адаптеров. Кроме этого, возможна установка тактовой частоты системной шины, а также числа тактов ожидания (или временной задержки) для микропроцессора при обращении к устройствам ввода-вывода, оперативной и/или кэш-памяти.

Заметим, что в случае повреждения микросхемы CMOS RAM (а также при разряде батареи или аккумулятора) программа Setup имеет возможность воспользоваться некой информацией по умолчанию (BIOS Setup Default Values), которая хранится в таблице соответствующей микросхемы ROM BIOS.