Смекни!
smekni.com

Технология FDDI (стр. 2 из 3)

  • Протокол передачи токена;
  • Правила захвата и ретрансляции токена;
  • Формирование кадра;
  • Правила генерации и распознавания адресов;
  • Правила вычисления и проверки 32-разрядной контрольной суммы.

Уровень SMT выполняет все функции по управлению и мониторингу всех остальных уровней стека протоколов FDDI. В управлении кольцом принимает участие каждый узел сети FDDI. Поэтому все узлы обмениваются специальными кадрами SMT для управления сетью. В спецификации SMT определено следующее:

  • Алгоритмы обнаружения ошибок и восстановления после сбоев;
  • Правила мониторинга работы кольца и станций;
  • Управление кольцом;
  • Процедуры инициализации кольца.

Отказоустойчивость сетей FDDI обеспечивается за счет управления уровнем SMT другими уровнями: с помощью уровня PHY устраняются отказы сети по физическим причинам, например, из-за обрыва кабеля, а с помощью уровня MAC - логические отказы сети, например, потеря нужного внутреннего пути передачи токена и кадров данных между портами концентратора.

В следующей таблице представлены результаты сравнения технологии FDDI с технологиями Ethernet и Token Ring.

Характеристика FDDI EthernetToken Ring
Битовая скорость 100 Мб/с 10 Мб/с16 Мб/c
Топология Двойное кольцо
деревьев
Шина/звездаЗвезда/кольцо
Метод доступа Доля от времени
оборота токена
CSMA/CDПриоритетная система резервирования
Среда передачи
данных
Многомодовое
оптоволокно,
неэкранированная
витая пара
Толстый коаксиал,
тонкий коаксиал,
витая пара,
оптоволокноЭкранированная и неэкранированная витая пара,
оптоволокно
Максимальная длина сети (без мостов) 200 км
(100 км на кольцо)
2500 м1000 м
Максимальное расстояние между узлами 2 км (-11 dB потерь
между узлами)
2500 м 100 м
Максимальное
количество узлов
500 (1000 соединений) 1024260 для экранированной витой пары, 72 для
неэкранированной витой
пары
Тактирование и
восстановление после отказов
Распределенная
реализация тактирования и восстановления после отказов
Не определеныАктивный монитор

Типы узлов и правила их соединения в сеть

Все станции в сети FDDI делятся на несколько типов по следующим признакам:

  • конечные станции или концентраторы;
  • по варианту присоединения к первичному и вторичному кольцам;
  • по количеству MAC-узлов и, соответственно, MAC-адресов у одной станции.

Одиночное и двойное присоединение к сети

Если станция присоединена только к первичному кольцу, то такой вариант называется одиночным присоединением - Single Attachment, SA (рисунок 2.4, а). Если же станция присоединена и к первичному, и ко вторичному кольцам, то такой вариант называется двойным присоединением - Dual Attachment, DA (рисунок 2.4, б).

Рис. 2.4. Одиночное (SA) и двойное (DA) подключение станций

Очевидно, что станция может использовать свойства отказоустойчивости, обеспечиваемые наличием двух колец FDDI, только при ее двойном подключении.

Рис. 2.5. Реконфигурация станций с двойным подключением при обрыве кабеля

Как видно из рисунка 2.5, реакция станций на обрыв кабеля заключается в изменении внутренних путей передачи информации между отдельными компонентами станции.

Количество MAC-узлов у станции

Для того, чтобы иметь возможность передавать собственные данные в кольцо (а не просто ретранслировать данные соседних станций), станция должна иметь в своем составе хотя бы один MAC-узел, который имеет свой уникальный MAC-адрес. Станции могут не иметь ни одного узла MAC, и, значит, участвовать только в ретрансляции чужих кадров. Но обычно все станции сети FDDI, даже концентраторы, имеют хотя бы один MAC. Концентраторы используют MAC-узел для захвата и генерации служебных кадров, например, кадров инициализации кольца, кадров поиска неисправности в кольце и т.п.

Станции, которые имеют один MAC-узел, называются SM (Single MAC) станциями, а станции, которые имеют два MAC-узла, называются DM (Dual MAC) станциями.

Возможны следующие комбинации типов присоединения и количества MAC-узлов:

SM/SA Станция имеет один MAC-узел и присоединяется только к первичному кольцу. Станция не может принимать участие в образовании общего кольца из двух.
SM/DA Станция имеет один MAC-узел и присоединяется сразу к первичному и вторичному кольцам. В нормальном режиме она может принимать данные только по первичному кольцу, используя второе для отказоустойчивой работы.
DM/DA Станция имеет два MAC-узла и присоединена к двум кольцам. Может (потенциально) принимать данные одновременно по двум кольцам (полнодуплексный режим), а при отказах участвовать в реконфигурации колец.
DM/SA Станция имеет два MAC-узла, но присоединена только к первичному кольцу. Запрещенная комбинация для конечной станции, специальный случай работы концентратора.

В зависимости от того, является ли станция концентратором или конечной станцией, приняты следующие обозначения в зависимости от типа их подключения:

SAS (Single Attachment Station) - конечная станция с одиночным подключением,

DAS (Dual Attachment Station) - конечная станция с двойным подключением,

SAC (Single Attachment Concentrator) - концентратор с одиночным подключением,

DAC (Dual Attachment Concentrator) - концентратор с двойным подключением.

Типы портов станций и концентраторов FDDI и правила их соединения

В стандарте FDDI описаны четыре типа портов, которые отличаются своим назначением и возможностями соединения друг с другом для образования корректных конфигураций сетей.

Тип порта Подключение Назначение
A PI/SO - (Primary In/Secondary Out)
Вход первичного кольца/ Выход вторичного кольца
Соединяет устройства с двойным
подключением с магистральными
кольцами
B PO/SI - (Primary Out/Secondary In)
Выход первичного кольца/Вход вторичного кольца
Соединяет устройства с двойным
подключением с магистральными
кольцами
M Master - PI/PO
Вход первичного кольца/Выход первичного кольца
Порт концентратора, который
соединяет его с устройствами с
одиночным подключением; использует только первичное кольцо
S Slave - PI/PO
Вход первичного кольца/Выход первичного кольца
Соединяет устройство с одиночным
подключением к концентратору; использует только первичное кольцо

На рисунке 2.6 показано типичное использование портов разных типов для подключения станций SAS и DAS к концентратору DAC.

Рис. 2.6. Использование портов различных типов

Соединение портов S - S является допустимым, так как создает изолированное первичное кольцо, соединяющее только две станции, но обычно неиспользуемым.

Соединение портов M - M является запрещенным, а соединения A-A, B-B, A-S, S-A, B-S, S-B - нежелательными, так как создают неэффективные комбинации колец.

Соединение Dual Homing

Соединения типа A-M и B-M соответствуют случаю, так называемого, Dual Homing подключения, когда устройство с возможностью двойного подключения, то есть с портами A и B, использует их для двух подключений к первичному кольцу через порты M другого устройства.

Такое подключение показано на рисунке 2.7.

На нем два концентратора, DAC4 и DAC5, подключены к концентраторам DAC1, DAC2 и DAC3 по схеме Dual Homing.

Концентраторы DAC1, DAC2 и DAC3 подключены обычным способом к обеим кольцам, образуя корневую магистраль сети FDDI. Обычно такие концентраторы называют в англоязычной литературе rooted concentrators.

Концентраторы DAC4 и DAC5 подключены по древовидной схеме. Ее можно было бы образовать и с помощью концентраторов SAC4 и SAC5, которые бы в этом случае подключались бы к М-порту корневых концентраторов с помощью порта S.

Подключение DAC-концентраторов по древовидной схеме, но с использованием Dual Homing, позволяет повысить отказоустойчивость сети, и сохранить преимущества древовидной многоуровневой структуры.

Рис. 2.7. Соединение Dual Homing

Концентратор DAC4 подключен по классической схеме Dual Homing. Эта схема рассчитана на наличие у такого концентратора только одного MAC-узла. При подключении портов A и B концентратора DAC4 к портам М концентратора DAC1 между этими портами устанавливается физическое соединение, которое постоянно контролируется физическим уровнем PHY. Однако, в активное состояние по отношению к потоку кадров по сети переводится только порт B, а порт A остается в резервном логическом состоянии. Предпочтение, отдаваемое по умолчанию порту В, определено в стандарте FDDI.

При некорректной работе физического соединения по порту B концентратор DAC4 переводит его в резервное состояние, а активным становится порт А. После этого порт В постоянно проверяет физическое состояние его линии связи, и, если оно восстановилось, то он снова становится активным.

Концентратор DAC5 также включен в есть по схеме Dual Homing, но с более полными функциональными возможностями по контролю соединения резервного порта А. Концентратор DAC5 имеет два узла MAC, поэтому не только порт В работает в активном режиме в первичном кольце, передавая кадры первичному MAC-узлу от порта М концентратора DAC3, но и порт А также находится в активном состоянии, принимая кадры от того же первичного кольца, но от порта М концентратора DAC2. Это позволяет вторичному MAC-узлу постоянно отслеживать логическое состояние резервной связи.