Технический университет Молдовы
РЕФЕРАТ ПО ПРОГРАММИРОВАНИЮ
ТЕМА: Булева алгебра.
Факультет CIM
Группа С - 092
Подготовил Плис Владимир.
Кишинёв 1999 г.
План:
Введение.
1) Предмет математической логики.
2) Калькуляция высказываний.
3) Заключение.
Библиография.
ВВЕДЕНИЕ
В данном реферате я попытаюсь раскрыть, некоторые аспекты булевой алгебры. Математическая логика является современной формой, так называемой формальной логики, применяющей математические методы для исследования своего предмета. (Другие ее названия: символическая логика, теоретическая логика, логистика.) В формальной логике и, соответственно, в математической логике, собраны результаты законов структуры правильных выводов. Вывод является таким мыслительным процессом, в результате которого появляются новые открытия на основании уже имеющихся (которые предполагаются правильными), без практических исследований. В действительности, новое открытие, полученное в результате вывода, (так называемый окончательный вывод) в скрытой форме находится в предварительно имеющихся знаниях, в так называемых предпосылках.
МАТЕМАТИЧЕСКАЯ ЛОГИКА
Простейшие закономерности выводов открывались человечеством эмпирическим путем в ходе общественного производства (например, простейшие соотношения арифметики и геометрии). Открытие более сложных законов связано с результатами науки формальной логики. Первое крупное обобщение формальной логики принадлежит Аристотелю. В формальной логике с самого начала применялись (в единичных случаях) математические методы, но развитие логики не успевало за применением таких методов по сравнению с другими областями математики. Поэтому формальная логика отстала от потребностей науки (в первую очередь от требований математики); отставание оказалось особенно очевидным в новую эру. Главными недостатками формальной логики являлись следующие .
1. Она не сумела привести законы выводов к небольшому количеству надежных логических законов; поэтому подтвердила правильность некоторых выводов на основе экспериментов, которые позже были опровергнуты примерами, доказывающими обратное.
2. Она была неспособна анализировать значительную часть выводов, применяемых в повседневной и научной жизни; доказать правильность или неправильность таких выводов. (Например, не могла доказать, что из правильности предложения «Каждая трапеция является четырехугольником» вытекает правильность предложения «Кто рисует трапецию, тот рисует четырехугольник).
Задача математизации формальной логики была поставлена и осуществлена Лейбницем. Его работу продолжили математики XIX века. На рубеже столетия с открытием противоречий в теории множеств (см. гл. «Теория множеств») развитие математической логики получило широкий размах. В настоящее время результаты математической логики используются во всех традиционных областях формальной логики; открыты совершенно новые области. В настоящее время «традиционная» формальная логика по сравнению с математической логикой имеет значение только для истории науки.
Математическая логика не претендует на открытие законов мышления вообще, или еще в меньшей степени на анализ философских проблем, связанных с человеческим мышлением. Эти вопросы больше относятся к «логике» (в более общем смысле слова) и к философии. (В дальнейшем под словом «логика» будем подразумевать математическую логику.)
ЧТО ТАКОЕ ВЫВОД?
Для более точного определения предмета математической логики следовало бы уточнить, что подразумевается под термином логически правильного вывода. Чтобы сформулировать хотя бы одно временное определение, рассмотрим пример вывода. (В соответствии с традиционной формой записывания, предпосылки отделяются от окончательного вывода горизонтальной чертой):
1. (Предпосылки) Если будет раздача премии, то мы выполнили план.
Будет раздача премии.
(Окончательный вывод) Мы выполнили план.
Если принять правильность предпосылок, то следует принять и правильность окончательного вывода. Другой, аналогичный пример :
Если мне выпадет туз, то я иду ва-банк.
Мне выпал туз.
Я иду ва-банк.
Обычно вместо предложений (мне выпал туз) и (я иду ва-банк) могут быть записаны любые такие изъявительные предложения, значения которых может быть правильно или ложно; следует оставить неизменными только расположение слов «если» и «то» и расположение предположений, то есть структуру вывода. Пусть А и В обозначает любые заменяющие предложения. Структуру вывода можно выразить следующей схемой;
Если А, то В
А
Под определением, что данная схема представляет собой (логически правильную) схему выводов, подразумевается следующее. Если вместо А и В подставить такие предложения, что предпосылки, полученные в результате замены, будут правильными, то и окончательный вывод будет правильным. Любой человек, который понимает значение союзов «если . . . то», поймет, что это правильная схема вывода. В схеме вывода фигурируют несколько слов с постоянным значением, далее несколько символов (букв) с меняющимся значением. Символы с меняющимся значением могут быть переменными разных типов. В соответствии с их типом вместо символов могут быть подставлены разные грамматические формации (например : изъявительные предложения, слова, выражающие свойства, названия предметов и т. д.). В предыдущем примере переменные А и В заменяются только изъявительными предложениями. На основе «регулярной» замены переменных некоторой (правильной) схемы вывода должен возникать правильный вывод.
Но определение «регулярной замены» означает не только соблюдение грамматических правил. В предыдущей схеме А и В могут означать только такие изъявительные предложения, правильность или ложность которых может быть решена однозначно. Такие изъявительные предложения будем называть высказываниями.
На основе любой схемы вывода может быть получен правильный вывод только при соблюдении условий подобного характера. Путем изменения условий могут быть построены различные теории логики.
Важнейшими главами математической логики являются калькуляция высказываний и калькуляция предикатов. В рамках данных глав может быть исследована схема вывода в самом общем случае при наименьшем числе условий.
В других главах логики рассматриваются специальные схемы вывода, являющиеся менее общими.
Предметом калькуляции высказываний является анализ таких схем вывода, при которых с заменой переменных на высказывания, получаются правильные выводы.
Под термином высказывания подразумевается такое изъявительное предложение, которое является однозначно или правильным, или ложным ; итак:
а) оно не может одновременно быть и правильным, и ложным (принцип непротиворечивости);
б) исключено, чтобы оно было и неправильным, и неложным (принцип исключения третьей возможности).
Свойства «правильное» и «ложное» подразумеваются в их обычном смысле; они не нуждаются в дальнейшем анализе.
При данных обстоятельствах приведенные выше изъявительные предложения удовлетворяют (с «хорошим приближением») этим двум условиям;
их можно считать высказываниями. Поэтому логика, построенная на этих двух условиях, может получить весьма широкое применение. Естественно, существуют такие «тонкие обстоятельства», при которых некоторых изъявительных предложений нельзя считать высказываниями (например, если дано предложение : «Иван просыпается», вряд ли можно сомневаться в правильности или ложности предложения «Иван спит»). Математические термины определяются таким образом, что предложения, выражающие соотношения между ними, всегда считаются высказываниями; такое положение существует во всех точных науках.
Понятие «высказывание» иногда обозначается словами «утверждение», «суждение».
В выводах могут фигурировать высказывания (либо в виде предпосылок, либо как окончательный вывод), возникшие из одного или нескольких высказываний, путем применения некоторого грамматического метода; они называются сложными высказываниями. Во многих случаях правильность вывода зависит от вида формирования сложного высказывания. Поэтому необходимо заниматься видом формирования сложных высказываний некоторых типов.
Под термином калькуляции высказываний подразумевается такой метод, с помощью которого из одного или нескольких высказываний (членов операции калькуляции высказываний) получается такое высказывание (результат операции), правильность или ложность которого однозначно определяется правильностью или ложностью членов.
Двумя простейшими примерами вышеприведенной операции являются отрицание и конъюнкция. (Операция и результат операции здесь обозначается одним и тем же названием.)
Под отрицанием высказывания А подразумевается высказывание «Неправильно, что А» (или некоторая грамматически преобразованная форма данного высказывания).
По значению выражения «неправильно» отрицание А правильно тогда и только тогда, если самое А неправильно; следовательно, отрицание действительно есть операция калькуляции высказываний (в соответствии с вышеприведенным определением).
Пример: Отрицанием предложения «мотор работает» является предложение «неправда, что мотор работает» или, иначе: «мотор не работает».
Отрицание является одночленной операцией. Отрицание «А» обозначается символом «~А» (читается : «не А»). Применяются также и обозначения «~ А», «— А», «А».
Под конъюнкцией двух высказываний А и В подразумевается высказывание «А и В» (или некоторая грамматически измененная форма данного высказывания). По значению союза «и» конъюнкция является правильной тогда и только тогда, если оба ее члена правильны.